Physics & Astronomy Courses

Professors Bloom, Cheyne, McDermott; Associate Professors Keohane, Thurman

Chair: Steven Bloom

The requirements for a major in Physics are 33 hours, including Physics 131, 132, 151, 152, 233, 244, 253, 331, 332, and either Physics 103 or 104. Of the remaining 9 hours, at least 6 must be at the 200 level or higher.

The requirements for a minor in Astronomy are 18 hours, including Astronomy 110, 151, 210, and 310; and Physics 131, 132, 151, and 152. Physics or Chemistry majors who take the Physics courses and elect to complete the Astronomy minor are allowed to count Physics 131, 132, 151, and 152 in both the major and the Astronomy minor.

For more information about the department, see its web page.

ASTRONOMY

ASTRONOMY 110. (3)
INTRODUCTION TO ASTRONOMY. An examination of astronomy: its methods and history, and the origin and development of the solar system, the galaxy, and the universe. Prerequisite: none. Corequisite: Astronomy 151. Offered: each semester.

ASTRONOMY 125. (3)
LIFE IN THE UNIVERSE. This course concentrates on the astronomical and biological conditions which have made possible the development of life on Earth. Our knowledge of the cosmos is critically examined to estimate the probabilities for life to arise elsewhere. Methods of searching for intelligent extraterrestrial life are reviewed. This is a one-semester course intended for the non-physical-science major. Prerequisite: none. Offered: every other fall semester of odd-numbered years.

ASTRONOMY 210. (3)
OBSERVATIONAL ASTRONOMY. A comprehensive introduction to observational astronomy, the course begins with the study of the greatest observations of the 20th century, followed by modern data analysis techniques on both space-based and ground-based data sets. The students have full access to the College telescope, as well as access to shared observing facilities. Prerequisite: Astronomy 110/151. Offered: spring semester of even-numbered years.

ASTRONOMY 310. (3)
ASTROPHYSICS. The study of the physics of astronomical processes in order to understand what can be learned from the radiations observed from astronomical objects. Detectors and detection techniques are also examined. Cross-listed: Same class as Physics 310. Prerequisites: Physics 132 and Mathematics 142. Offered: spring semester of odd-numbered years.

PHYSICS

PHYSICS 103. (3)
BASIC DIGITAL ELECTRONICS. A laboratory-based study of fundamental electronic concepts, digital logic, and microcomputer circuitry. Prerequisite: none. Offered: spring semester.

PHYSICS 104. (3)
BASIC LINEAR ELECTRONICS. A laboratory-based study of circuits employing transistors and integrated circuits. Prerequisite: none. Offered: fall semester.

PHYSICS 107. (3)
ENERGY AND THE ENVIRONMENT. An introductory course focusing on the basic physical principles behind production, consumption, conservation and pollution due to the use of energy. Topics include fossil fuels, renewable energy sources, conservation techniques, transportation, and climate change. Prerequisite: none. Offered: every other fall semester of odd-numbered years.

PHYSICS 108. (3)
METEOROLOGY AND CLIMATOLOGY. An elementary introduction to meteorology and climatology including properties of the atmosphere and their effects on the weather, climate change and global warming. Prerequisite: none. Offered: spring semester.

PHYSICS 131. (3)
FUNDAMENTALS OF PHYSICS I. A calculus-based introduction to classical mechanics. Topics include linear kinematics and dynamics, work and energy, momentum, gravitation, rotational kinematics, oscillations, fluids, and mechanical and sound waves. Prerequisite or corequisite: Mathematics 141. Corequisite: Physics 151. Offered: fall semester.

PHYSICS 132. (3)
FUNDAMENTALS OF PHYSICS II. A calculus-based introduction to electromagnetism and modern physics. Electrostatics, the electric field and potential, electric current and circuits, magnetostatics, induction, light and optics, the atomic nature of matter, the structure of the atom, and the nucleus are studied. Prerequisites: Physics 131 and Mathematics 141. Prerequisite or corequisite: Mathematics 142. Corequisite: Physics 152. Offered: spring semester.

PHYSICS 135. (3)
THE PHYSICS OF SOUND. The course begins with an introduction to the basic physics of sound. Additional topics include a study of musical instruments, high-fidelity audio systems, speaker design and placement, microphones, and room acoustics. Prerequisite: none. Offered: fall semester of even- numbered years.

PHYSICS 220. (3)
COMPUTATIONAL METHODS IN PHYSICS. An introduction to the techniques of using computers to solve problems in physics. These include numerical differentiation and integration, numerical modeling, and graphical presentation of data. The techniques learned are applied to solve interesting problems in physics. Previous programming experience and computer literacy are helpful but not expected. Prerequisite: Physics 131. Offered: fall semester.

PHYSICS 233. (3)
MODERN PHYSICS. An introduction to modern physics, which includes a study of relativity, atoms, molecules, nuclei, waves, and spectra. Prerequisite: Physics 132. Corequisite: Physics 253. Offered: fall semester.

PHYSICS 234. (3)
MATHEMATICAL METHODS FOR PHYSICS. Selected mathematical techniques most often used in physics are studied. Power Series, Fourier Series, linear transformations, ordinary and partial differential equations, Eigenvalues, Eigenvectors, complex variables, LeGendre Polynomials, spherical harmonics, and Bessel Functions are among the topics considered. These techniques are applied to problems in electricity and magnetism, mechanics, acoustics, and quantum mechanics. Prerequisite: Physics 132. Offered: spring semester.

PHYSICS 244. (3)
EXPERIMENTAL PHYSICS. An instrumentation based course that provides an introduction to modern measurement techniques, instrumentation, and data analysis. Topics include concepts of electronics, spectroscopy systems, and mechanical systems. Emphasis is placed on the principles of data collection and analysis. Prerequisite: Physics 132. Offered: spring semester.

PHYSICS 301-302. (1-1)
PHYSICS SEMINAR I-II. A study of special topics, with emphasis on the preparation and oral presentation of reports. Prerequisites: Physics 131 and 132. Offered: on sufficient demand.

PHYSICS 310. (3)
ASTROPHYSICS. The study of the physics of astronomical processes in order to understand what can be learned from the radiations observed from astronomical objects. Cross-listed: Same class as Astronomy 310. Prerequisites: Physics 132 and Mathematics 142. Offered: spring semester of odd-numbered years.

PHYSICS 331. (3)
CLASSICAL MECHANICS. Particle dynamics is treated with special emphasis on harmonic motion, motion in a central force field, and the two-body problem. Prerequisite: Physics 131. Offered: fall semester.

PHYSICS 332. (3)
ELECTRICITY AND MAGNETISM I. A study of electrostatics, dielectrics, and magnetostatics. Prerequisite: Physics 331. Offered: spring semester.

PHYSICS 341. (3)
WAVE PROPERTIES AND OPTICS. Geometrical and physical optics. Prerequisite: Physics 132. Offered: fall semester of odd-numbered years.

PHYSICS 342. (3)
THERMODYNAMICS AND STATISTICAL PHYSICS. An introduction to kinetic theory and thermodynamics, with a brief survey of statistical mechanics. Prerequisite: Physics 132. Offered: spring semester.

PHYSICS 365. (1)
INTRODUCTION TO HONORS RESEARCH. A detailed proposal for an Honors research project is prepared in consultation with the faculty member who supervises the research. Prerequisite: consent of the instructor.

PHYSICS 421-422. (3-3)
THEORETICAL PHYSICS. Selected topics investigated in depth using sophisticated mathematical techniques, mostly advanced mechanics and electromagnetic field theory. Prerequisite: Physics 332. Offered: on sufficient demand.

PHYSICS 431. (3)
SUB-ATOMIC PHYSICS. Instructor chooses from among the following topics according to the interests of the students: constituents and models of the nucleus, classification of sub-atomic particles, interactions of sub-atomic particles with matter and fields, structure of sub-atomic particles, conservation laws and symmetries, electromagnetic forces, strong and weak forces, and unification of forces. Prerequisite or corequisite: Physics 233. Offered: on sufficient demand.

PHYSICS 432. (3)
ELECTRICITY AND MAGNETISM II. A study of electrodynamics, magnetodynamics, Maxwell's Equations, and electromagnetic waves. Prerequisite: Physics 332. Offered: on sufficient demand.

PHYSICS 441. (3)
SOLID-STATE PHYSICS. An introductory course in solid-state physics and material science, with an emphasis on the applications of each topic to experimental and analytical techniques. Topics include crystallography, thermal and vibrational properties of crystals and semiconductors, metals and the band theory of solids, superconductivity, the magnetic properties of materials, and surface physics. Prerequisite: Physics 332. Offered: fall semester of even-numbered years.

PHYSICS 442. (3)
QUANTUM MECHANICS. The physical foundations of the quantum theory are studied. Schroedinger's Equation is introduced and used to analyze elementary aspects of the atom. Perturbation theory, the variational method, and other approximation methods are introduced. Prerequisite: Physics 331. Offered: fall semester of even-numbered years.

LABORATORIES

ASTRONOMY

ASTRONOMY 151. (1)
ASTRONOMY LABORATORY. An experimental and observational approach to introductory astronomy. Goals for this class include the implementation of observational techniques, the development of data analysis skills using current standard spreadsheet software, the development of scientific writing skills, and learning to use an astronomical telescope. Corequisite: Astronomy 110. Offered each semester.

PHYSICS
PHYSICS 151. (1)

GENERAL PHYSICS LABORATORY I.
An experimental examination of a variety of physical phenomena, along with an introduction to laboratory techniques and procedure. Corequisite: Physics 131. Offered: fall semester.

PHYSICS 152. (1)
GENERAL PHYSICS LABORATORY II. An experimental examination of a variety of physical phenomena, along with an introduction to laboratory techniques and procedure. Corequisite: Physics 132. Offered: spring semester.

PHYSICS 253. (1)
MODERN PHYSICS LABORATORY. A laboratory course that consists of a sequence of experiments designed to study the properties of electrons, photons, atoms and their interactions. Corequisite: Phys 233. Offered: fall semester.

PHYSICS 351-352. (1, 2, 3)
ADVANCED LABORATORY. A laboratory course designed to acquaint the student with the instruments used in basic physical measurements and with the design of experiments. Prerequisite: consent of the instructor. Offered: 351 in the fall semester; 352 in the spring semester.

PHYSICS 461. (3)
HONORS ADVANCED LABORATORY. An extended project conducted in collaboration with a faculty member, ordinarily resulting in publishable research. Prerequisite: consent of the instructor.

PHYSICS 462. (3)
HONORS ADVANCED LABORATORY. A continuation of Physics 461 for projects found suitable. Prerequisite: consent of the instructor.

updated 7/10/14