On my honor, I have neither given nor received any aid on this work, nor am I aware of any breach of the Honor Code that I shall not immediately report.

1. Let X have the discrete uniform distribution on $\{1, 2, \dots, n\}$, i.e. P(X = k) = 1/n for $k = 1, 2, \dots n$. Find the mean and variance of X.

Solution:

For the mean, we have

$$E[X] = \sum_{k=1}^{n} k \cdot \frac{1}{n} = \frac{1}{n} \sum_{k=1}^{n} k = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

For the variance, we have $\operatorname{Var}(X) = E[X^2] - E[X]^2$, and

$$E\left[X^2\right] = \sum_{k=1}^n k^2 \cdot \frac{1}{n} = \frac{1}{n} \sum_{k=1}^n k^2 = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}$$

 So

$$\operatorname{Var}(X) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}$$

2. Let X be a discrete random variable with probability mass function p(x). The *entropy* of X is the quantity H(X) defined by

$$H(X) = -E\left[\log_2(p(X))\right]$$

Like variance, entropy can be considered as a measure of uncertainty in a distribution. (In fact the units of entropy are *bits*.) Find the entropy of the Bernoulli(p) random variable. Plot H(X) as a function of p, and comment.

Solution:

X is Bernoulli(p), so its mass function p(x) is given by

$$p(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$

Hence,

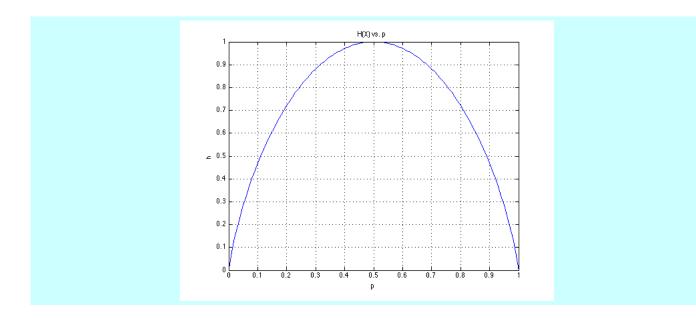
$$E\left[\log_2(p(X))\right] = \sum_{x=0}^{1} \log_2(p(x)) \cdot p(x)$$

= $\log_2(1-p) \cdot (1-p) + \log_2(p) \cdot p$

Thus

$$H(X) = -E\left[\log_2(p(X))\right] = -(1-p)\log_2(1-p) - p\log_2(p)$$

The plot of H(X) as a function of p is given below. Notice that the entropy (or uncertainty) is maximized when p = 1/2 (when the entropy is 1 bit), and minimized when p = 0 or p = 1 (when the entropy is zero bits). This makes sense intuitively: a fair coin is more unpredictable than any biased coin, while a two-headed coin (p = 1) or a two-tailed (p = 0) coin is completely predictable.



- 3. Let X have possible values $\{1, 2\}$, let Y have possible values $\{1, 2, 3\}$, and suppose the joint mass function for (X, Y) is p(x, y) = C(x + y) where $x \in \{1, 2\}$, $y \in \{1, 2, 3\}$, and C is a constant.
 - (a) Find the value of C.
 - (b) Find the marginal mass functions for X and Y.
 - (c) Are X and Y independent? Explain.

Solution:

(a) We must have $\sum_{x=1}^{2} \sum_{y=1}^{3} p(x, y) = 1$. Thus

$$1 = \sum_{x=1}^{2} \sum_{y=1}^{3} C(x+y) = C\left(\sum_{x=1}^{2} \sum_{y=1}^{3} x + \sum_{y=1}^{3} \sum_{x=1}^{2} y\right)$$
$$= C\left(3\sum_{x=1}^{2} x + 2\sum_{y=1}^{3} y\right) = C\left(3\cdot 3 + 2\cdot 6\right) = 21C$$

So C = 1/21.

(b)

$$p_X(x) = \sum_{y=1}^3 p(x,y) = \frac{1}{21} \sum_{y=1}^3 (x+y) = \frac{3x+6}{21}, \quad x = 1,2$$
$$p_Y(y) = \sum_{x=1}^2 p(x,y) = \frac{1}{21} \sum_{x=1}^2 (x+y) = \frac{3+2y}{21}, \quad y = 1,2,3$$

(c) Note that

$$p(1,1) = \frac{1+1}{21} = \frac{2}{21}$$
$$p_X(1) \cdot p_Y(1) = \frac{9}{21} \cdot \frac{5}{21} = \frac{5}{49}$$

Hence, $p(x, y) \neq p_X(x) \cdot p_Y(y)$, and thus X and Y are not independent.

4. Deal a five-card hand from well-shuffled deck, and let X be the number of hearts in the hand, and Y be the number of clubs. Find the joint probability mass function for X and Y.

Solution:

$$p(x,y) = P\left(X = x, Y = y\right) = \frac{\binom{13}{x}\binom{13}{y}\binom{26}{5-x-y}}{\binom{52}{5}}, \quad x, y \ge 0, \ x+y \le 5$$

5. Consider a Bernoulli trials process with success probability p. Let X_n be the number of successes up to time n. Find the joint probability mass function for X_m and X_{m+n} . (Hint: Find $P(X_m = i, X_{m+n} = i + j)$ using the multiplication principle for conditional probabilities.)

Solution:

$$P(X_m = i, X_{m+n} = i+j) = P(X_m = i) P(X_{m+n} = i+j|X_m = i)$$

Clearly $P(X_m = i) = {m \choose i} p^i (1-p)^{m-i}$. Also, given that $X_m = i$, we have $X_{m+n} = i+j$ if and only if there are exactly j successes in trials m+1 through m+n. By independence this happens with probability ${n \choose i} p^j (1-p)^{n-j}$. Hence

$$P(X_m = i, X_{m+n} = i+j) = \binom{m}{i} p^i (1-p)^{m-i} \binom{n}{j} p^j (1-p)^{n-i} \binom{m}{i} \binom{m}{i} \binom{n}{j} p^{i+j} (1-p)^{m+n-(i+j)},$$

for $0 \le i \le m$, $0 \le j \le n$.

6. Suppose that X and Y are independent discrete random variables. Show that E[XY] = E[X]E[Y].

Solution:

$$E[XY] = \sum_{x \in S_X} \sum_{y \in S_Y} xyP(X = x, Y = y)$$

= $\sum_{x \in S_X} \sum_{y \in S_Y} xyP(X = x)P(Y = y)$ (by independence)
= $\sum_{x \in S_X} xP(X = x) \left(\sum_{y \in S_Y} yP(Y = y)\right)$
= $\left(\sum_{y \in S_Y} yP(Y = y)\right) \left(\sum_{x \in S_X} xP(X = x)\right)$
= $E[Y]E[X]$

7. The probability generating function for an integer-valued random variable X is

$$P(z) = \frac{1}{6} + \frac{1}{3}z + \frac{1}{2}z^2$$

- (a) Find the probability mass function for X.
- (b) Find the moment-generating function for X.

(c) Suppose Y and Z are random variables with the same probability generating function as X, and that $\{X, Y, Z\}$ is independent. Find the probability mass function for S = X + Y + Z.

Solution:

(a)

(b)

$$M_X(t) = \frac{1}{6} + \frac{1}{3}e^t + \frac{1}{2}e^{2t}$$

(c) The probability generating function for S is

$$P_S(z) = \left(\frac{1}{6} + \frac{1}{3}z + \frac{1}{2}z^2\right)^3$$

= $\frac{1}{216} + \frac{1}{36}z + \frac{7}{72}z^2 + \frac{11}{54}z^3 + \frac{7}{24}z^4 + \frac{1}{4}z^5 + \frac{1}{8}z^6$

Hence the mass function for S is

	0						
P(S=s)	1/216	1/36	7/72	11/54	7/24	1/4	1/8

- 8. The probability generating function for a certain integer-valued random variable X is $P(z) = e^{\lambda(z-1)}$, where λ is a positive constant.
 - (a) Find the probability mass function for X.
 - (b) Find the mean and variance of X.

Solution:

(a)

$$P(z) = e^{-\lambda} e^{\lambda t} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} z^k$$

Hence the probability mass function for X is

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}$$

(This is called the *Poisson* distribution with parameter λ .)

(b) The moment generating function for X is $M(t) = e^{\lambda(e^t - 1)}$. So $M'(t) = M(t)\lambda e^t$, and thus

$$E[X] = M'(0) = \lambda.$$

Also

$$M''(t) = M'(t)\lambda e^t + M(t)\lambda e^t,$$

so $E[X^2] = M''(0) = \lambda^2 + \lambda$. Therefore

$$\operatorname{Var}(X) = E\left[X^2\right] - E\left[X\right]^2 = \lambda$$