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A Question
‣ What kind of waveforms (functions) can be 

represented by evenly spaced pure tones?

‣ There’s a fascinating answer...

s(t) =
∞�

k=1

ak cos (2πkf0t) + bk sin (2πkf0t)
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Fourier’s Bold Idea
‣ Suppose we could write some function s(t) as a 

combination of evenly spaced tones:

‣ What would the coefficients ak and bk have to be?

s(t) =
∞�

k=1

ak cos (2πkf0t) + bk sin (2πkf0t)
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‣ Similarly

an =
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T
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0
s(t) cos(2πnf0t) dt
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Fourier’s Theorem (1807)
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The Burning Question
‣ Which functions s defined on [0,T] can be written as 

‣ More generally , which s can be written as

s(t) =
∞�

k=1

ak cos (2πkf0t) + bk sin (2πkf0t)

s(t) = a0 +
∞�

k=1

ak cos (2πkf0t) + bk sin (2πkf0t)
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A Question of Convergence

sN (t) = a0 +
N�

k=1

ak cos (2πkf0t) + bk sin (2πkf0t)

‣ Partial sums of the Fourier series:

‣ For which s do we have 

(and in what sense?)

sN → s as N → ∞
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for each t at which s is 
continuous.

* (don’t ask)

lim
N→∞

sN (t) = s(t)
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Riesz-Fischer Theorem (1907)
‣If s is measurable, then the 
following are equivalent:

‣Note: physically,

B:

� T

0
(s(t)− sN (t))2 dt → 0

A:

� T

0
s2(t) dt < ∞

� T

0
s2(t) dt = energy of s



Carleson’s Theorem (1966)
‣If s is measurable, and 

then

for almost every t in [0, T].

� T

0
s2(t) dt < ∞

lim
N→∞

sN (t) = s(t)
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So why is Fourier smiling?
‣He was wrong, but he was 
“essentially right!”

‣His “bold idea” lead to a whole 
new field of mathematics.

‣Spurred mathematicians to 
think more rigorously about 
the “function” concept.

‣His approach continues to 
inspire new mathematics

• Wavelets

• Empirical mode decomposition 
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IV. The Music of 
Mathematics
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And Another...
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