

Marcus Pendergrass, Hampden-Sydney College Applied Mathematics, Fall 2012

Marcus Pendergrass, Hampden-Sydney College Applied Mathematics, Fall 2012

Marcus Pendergrass, Hampden-Sydney College Applied Mathematics, Fall 2012

I. Some Sound Mathematics

Where did this sound come from?

Where did this sound come from?

"I've got a bad <u>fe</u>eling about this..."

"I've got a bad <u>fe</u>eling about this..."

-0.1500	-0.1132	-0.0648	-0.0081	0.0528	0.1132	0.1686
0.2131	0.1983	0.1944	0.2052	0.2318	0.2720	0.3199
0.2487	0.2689	0.8 - 0.2753	0.2693	0.2540	0.2335	-0.0081
0.2121	0.1983	0.1686	0.1944	0.2052	0.2318	0.2720
0.2341	0.2487	0.2689	0,2753	0.2693	0.2540	0.2335
0.2041	0.1983	0.4 0.1944	0 2052	0.2318	0.2720	0.3199
0.2487	0.2689	0.2 0.2753	0.2693	0.2540	0.2335	-0.0081
0.2411	0.1983	0.1686	0.1944	0.2052	0.2318	0.2720
0.2234	0.1983	0:1944	12052 +	0 2318	0.2720	0.3199
0.2487	0.2689	^{-0.2} - 0 2753	10.2693	0 2540	‡ 0 <mark>:</mark> 2335	-0.0081
0.2411	0.1983	. _{0.4} 0.1686	0.1944	0.2052	02318	0.2720
-0.1500	-0.1132	-0.0648	-0.00811	0.0528	0 1132	0.1686
0.2131	0.1983	0.1944	4 0.2 05 2	0.2318.	0 2720	0.3199
0.2487	0.2689	^{-0.8} - 0.2753	0.2693	0.2540	0.2335	-0.0081
0.2121	0.1983	0.1686	0.1944	0.2052*	0.2318	0.2720
0.2341	0.2487	1 0.2689 ^{1.005}	0.2753	0.2693	01.02540	0.2335
0.2041	0.1983	0.1944	0.2052	0.2318	0.2720	0.3199
0.2487	0.2689	0.2753	0.2693	0.2540	0.2335	-0.0081
0.2411	0.1983	-0.1686	0.1944	$n\sigma^{0}2052$	<u>, 2318</u> ,	0.2720
0.2234	0.1983	80.1944Da	0.2052		0.2720	0.3199
0.2487	0.2689	0.2753	0.2693	0.2540	0.2335	-0.0081
0.2411	0.1983	0.1686	0.1944	0.2052	0.2318	0.2720

George played a 12-string guitar!

F major pentatonic scale / D bass

F major pentatonic scale / D bass

F major pentatonic scale / D bass

II. Of Tone and Timbre

• Definition: a <u>pure tone</u> is a function of the form

$s(t) = A\cos\left(2\pi f_0 t + \phi\right)$

• Definition: a <u>pure tone</u> is a function of the form

• Definition: a <u>pure tone</u> is a function of the form

• Definition: a <u>pure tone</u> is a function of the form

• Definition: a <u>pure tone</u> is a function of the form

 $= a\cos\left(2\pi f_0 t\right) + b\sin\left(2\pi f_0 t\right)$

Simulated Tuning Fork

 Simulate a tuning fork by enveloping a pure tone with a time-varying amplitude:

$s(t) = A(t)\cos\left(2\pi f_0 t + \phi\right)$
Simulated Tuning Fork

Simulate a tuning fork by enveloping a pure tone with a time-varying amplitude:

time-varying amplitude $s(t) = A(t) \cos\left(2\pi f_0 t + \phi\right)$

Simulated Tuning Fork

Simulated Tuning Fork

Opus I: Duet for Pure Tones

Pattern α

Pattern β

Opus I: Duet for Pure Tones

Pattern α

Pattern β

Not so pure tones...

Not so pure tones...

 <u>Timbre</u> is the intrinsic "sound quality" of a musical note or sound.

 <u>Timbre</u> is the intrinsic "sound quality" of a musical note or sound.

Name that timbre!

 <u>Timbre</u> is the intrinsic "sound quality" of a musical note or sound.

Name that timbre!

 <u>Timbre</u> is the intrinsic "sound quality" of a musical note or sound.

Name that timbre!

 <u>Timbre</u> is the intrinsic "sound quality" of a musical note or sound.

Name that timbre!

What determines an instrument's characteristic timbre?

Alto Saxophone (A4)

Alto Saxophone (A4)

Bass Flute (A3)

Bass Flute (A3)

Clarinet (D4)

Clarinet (D4)

Flute (E4)

Flute (E4)

Horn (A4)

Horn (A4)

Oboe (E4)

Oboe (E4)

Trumpet (E4)

Trumpet (E4)

Sickly Violin (A4)

Sickly Violin (A4)

- Timbre is related to several waveform characteristics :
 - Envelope (macroscopic wave shape)
 - Steady state (microscopic wave shape)
 - Energy spectrum

- Timbre is related to several waveform characteristics :
 - Envelope (macroscopic wave shape)
 - Steady state (microscopic wave shape)
 - Energy spectrum

But did you notice something...

- Timbre is related to several waveform characteristics :
 - Envelope (macroscopic wave shape)
 - Steady state (microscopic wave shape)
 - Energy spectrum

But did you notice something...in the frequency domain?

Timbre is related to several waveform characteristics :

But did you notice something...in the frequency domain?

A Question

What kind of waveforms (functions) can be represented by evenly spaced pure tones?

A Question

What kind of waveforms (functions) can be represented by evenly spaced pure tones?

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$
A Question

What kind of waveforms (functions) can be represented by evenly spaced pure tones?

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

There's a fascinating answer...

III. Fourier's Dream

III. Fourier's Dream

Joseph Fourier

- French, 1768 1830
- Commoner, orphaned at age
 8
- Enthusiastic supporter of French Revolution
- Permanent Secretary of French Academy of Sciences (1822 - 1830)
- Dimensional analysis, Fourier series (1807), Fourier transform, Fourier law
- Greenhouse effect (1824, 1827)

Joseph Fourier

- French, 1768 1830
- Commoner, orphaned at age
 8
- Enthusiastic supporter of French Revolution
- Permanent Secretary of
 French Academy of Sciences
 (1822 1830)
- Dimensional analysis, Fourier series (1807), Fourier transform, Fourier law
- Greenhouse effect (1824, 1827)

Joseph Fourier

- French, 1768 1830
- Commoner, orphaned at age
 8
- Enthusiastic supporter of French Revolution
- Permanent Secretary of French Academy of Sciences (1822 - 1830)
- Dimensional analysis, Fourier series (1807), Fourier transform, Fourier law
- Greenhouse effect (1824, 1827)

Fourier and Friend?

Fourier and Friend?

Suppose we <u>could</u> write some function s(t) as a combination of evenly spaced tones:

 Suppose we <u>could</u> write some function s(t) as a combination of evenly spaced tones:

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

 Suppose we <u>could</u> write some function s(t) as a combination of evenly spaced tones:

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

• What would the coefficients a_k and b_k have to be?

$$\int_0^T \cos(2\pi k f_0 t) \, \cos(2\pi n f_0 t) \, dt = \begin{cases} \frac{T}{2} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

$$\int_0^T \cos(2\pi k f_0 t) \, \cos(2\pi n f_0 t) \, dt = \begin{cases} \frac{T}{2} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

$$\int_0^T \sin(2\pi k f_0 t) \, \sin(2\pi n f_0 t) \, dt = \begin{cases} \frac{T}{2} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

$$\int_0^T \cos(2\pi k f_0 t) \, \cos(2\pi n f_0 t) \, dt = \begin{cases} \frac{T}{2} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

$$\int_0^T \sin(2\pi k f_0 t) \, \sin(2\pi n f_0 t) \, dt = \begin{cases} \frac{T}{2} & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}$$

$$\int_{0}^{T} \cos(2\pi k f_0 t) \, \sin(2\pi n f_0 t) \, dt = 0$$

Assume:

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

• Multiply by $\cos(2\pi n f_0 t)$ and integrate:

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

• Multiply by $\cos(2\pi n f_0 t)$ and integrate:

$$\int_0^T s(t) \cos(2\pi n f_0 t) \, dt = \sum_{k=1}^\infty a_k \int_0^T \cos\left(2\pi k f_0 t\right) \cos\left(2\pi n f_0 t\right) \, dt$$

$$+\sum_{k=1}^{\infty} b_k \int_0^T \sin(2\pi k f_0 t) \cos(2\pi n f_0 t) dt$$

$$\int_0^T s(t) \cos(2\pi n f_0 t) \, dt = \sum_{k=1}^\infty a_k \int_0^T \cos(2\pi k f_0 t) \cos(2\pi n f_0 t) \, dt$$

$$+\sum_{k=1}^{\infty} b_k \int_0^T \sin(2\pi k f_0 t) \cos(2\pi n f_0 t) dt$$

$$\int_0^T s(t) \cos(2\pi n f_0 t) \, dt = \sum_{k=1}^\infty a_k \int_0^T \cos(2\pi k f_0 t) \cos(2\pi n f_0 t) \, dt$$

$$+\sum_{k=1}^{\infty} b_k \int_0^T \sin(2\pi k f_0 t) \cos(2\pi n f_0 t) dt$$

$$\int_{0}^{T} s(t) \cos(2\pi n f_{0}t) dt = \sum_{k=1}^{\infty} a_{k} \int_{0}^{T} \cos(2\pi k f_{0}t) \cos(2\pi n f_{0}t) dt$$
$$+ \sum_{k=1}^{\infty} b_{k} \int_{0}^{T} \sin(2\pi k f_{0}t) \cos(2\pi n f_{0}t) dt$$

$$\int_{0}^{T} s(t) \cos(2\pi n f_0 t) \, dt = a_n \, \frac{T}{2}$$

$$a_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

• We've found a_n !

$$a_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

• We've found a_n !

$$a_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

Similarly

$$b_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f_0 t) dt$$

Fourier's Theorem (1807)

▶ If a function *s* defined on [0,*T*] can be written as

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

then

$$a_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$b_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f_0 t) dt$$

The Burning Question

The Burning Question

• <u>Which</u> functions s defined on [0,T] can be written as

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

The Burning Question

• Which functions s defined on [0,T] can be written as

$$s(t) = \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

More generally, which s can be written as

$$s(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

Fourier's (Overly) Bold Answer

Fourier's (Overly) Bold Answer

Every function!

Fourier's (Overly) Bold Answer

A Question of Convergence

Partial sums of the Fourier series:

$$s_N(t) = a_0 + \sum_{k=1}^N a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t)$$

For which *s* do we have

$$s_N \to s \text{ as } N \to \infty$$

(and in what sense?)

Dirichlet's Theorem (1829)

Dirichlet's Theorem (1829)

If s satisfies the Dirichlet conditions^{*} on [0, T], then

 $\lim_{N \to \infty} s_N(t) = s(t)$

for each *t* at which *s* is continuous.

Dirichlet's Theorem (1829)

If s satisfies the Dirichlet conditions^{*} on [0, T], then

 $\lim_{N \to \infty} s_N(t) = s(t)$

for each t at which s is continuous.

* (don't ask)

Riesz-Fischer Theorem (1907)

A:
$$\int_0^T s^2(t) \, dt < \infty$$

B:
$$\int_0^T \left(s(t) - s_N(t) \right)^2 dt \to 0$$

Riesz-Fischer Theorem (1907)

If s is measurable, then the following are equivalent:

A:
$$\int_0^T s^2(t) \, dt < \infty$$

B:
$$\int_0^T \left(s(t) - s_N(t) \right)^2 dt \to 0$$

Riesz-Fischer Theorem (1907)

If s is measurable, then the following are equivalent:

A:
$$\int_0^T s^2(t) \, dt < \infty$$

B:
$$\int_0^T \left(s(t) - s_N(t) \right)^2 dt \to 0$$

Note: physically,

$$\int_0^T s^2(t) \, dt = \text{ energy of } s$$

Carleson's Theorem (1966)

• If s is measurable, and

$$\int_0^T s^2(t) \, dt < \infty$$

then

$$\lim_{N \to \infty} s_N(t) = s(t)$$

for almost every t in [0, T].

• He was wrong, but he was "essentially right!"

- He was wrong, but he was "essentially right!"
- His "bold idea" lead to a whole new field of mathematics.

- He was wrong, but he was "essentially right!"
- His "bold idea" lead to a whole new field of mathematics.
- Spurred mathematicians to think more rigorously about the "function" concept.

- He was wrong, but he was "essentially right!"
- His "bold idea" lead to a whole new field of mathematics.
- Spurred mathematicians to think more rigorously about the "function" concept.
- His approach continues to inspire new mathematics
 - Wavelets
 - Empirical mode decomposition

Opus 2: Fourier's Triumph

Pattern α

Pattern β

Pattern γ

Pattern δ

Opus 2: Fourier's Triumph

Pattern α

Pattern β

Pattern γ

Pattern δ

Opus 2: Fourier's Triumph

IV. The Music of Mathematics

Another Musical Fractal

Another Musical Fractal

And Another...

And Another...

Self-Similarity

A Musical Escher

A Musical Escher

Thanks!

Thanks!

mpendergrass@hsc.edu

Thanks!

mpendergrass@hsc.edu