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1 Introduction

This paper is a survey of various methods of data compression. When the computer age came
about in the 1940’s, storage space became an issue. Data compression was the answer to that
problem. The compression process takes an original data set and reduces its size by taking out
unnecessary data. There are two main types of compression, lossy and lossless. This paper will deal
exclusively with lossy compression. So, through the compression/decompression algorithm, some
data from the original file is deleted and not recovered. There are many methods of compression,
and this paper will go into depth about compression using Fourier Transformations and Wavelet
Compression. Each of these methods has strengths and weaknesses in regards to different types of
file; the paper will also cover those aspects of the two methods.

2 Background

2.1 History

The beginnings of data compression began as early as 1838 with its use is morse code.1 Letters
that were common in English were given shorter codes to save time as the messages were being
typed.1 Over 100 years later, as the computer ago was on the rise, this simple morse code method,
was built upon and became a study that is known as Information Theory. However, even before
Information Theory, a mathematician by the name of Joseph Fourier observed that “any sufficiently
smooth function could be decomposed into sums of sine waves with frequencies corresponding to
successive integers.”2 Fourier’s method was applied to sounds. After breaking a function into
frequencies, Fourier was able to drop the highest and lowest frequencies, but keep the rest. This
change was unable to be heard by the human ear, and space was able to be saved during recordings.
This methodology is still used today in Compression algorithms. This method was also applied
to images in the 1950’s, in the attempt to decrease the amount of data that needed to be sent
to television; however, no solution was given at that time. In fact, it took another 30 years
until the notion of image compression became prevelant in mainstream technology.2 The area of
Wavelet Compression was founded by Alfred Haar, a Hungarian Mathematician, in the early 20th
Century.3 Haar created the first known wavelet, which is now known as a Haar Wavelet. This area
of compression has grown rapidly since the 1970’s when interest in Wavelets and their uses began
to spread through the mathematical field. Fractal compression is a lossy image compression, which
is has proven to be more efficient than image compression using Fourier transformations. In 1987,
Michael Barnsley was at the top of field in the development of fractal compression, and currently
has many patents on the algorithms.4 Fractal Compression has incredible compression ratios, which
is an attractive aspect to much commercial use, especially to companies that transfer much data
over the internet. Many companies, from Microsoft to NetFlix, now use this type of algorithm.
Without this method, streaming information over the internet would take many times longer.
Although Compressive Sensing has been studied for over 40 years, it did not see significant strides
until 2004.5 At that time, a mathematician, by the name of Emmanuel J. Candes, was performing
research with magnetic resonance imaging.5 He found that an image could be reconstructed even
when the data seemed insufficient by the Nyquist-Shannon criterion.5 This criterion states that any
bandlimited signal can be reconstructed if the sampling rate, per second, is greater than twice the
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highest frequency in the original file.6 With this finding, the area of compressive sensing exploded,
and is a current hot-spot in Information Theory.

2.2 Mathematical Background

In order for us to understand the theory behind compression and decompression, it is necessary to
recall several key ideas from Linear Algebra. These underlying ideas make the compression process
possible. Let β = {b1,b2, · · · ,bk} be a set of vectors in Cn. We say that a linear combination of
these vectors is any expression of the form

c1b1 + c2b2 + · · ·+ ckbk

where c1, c2, . . . , ck are scalars. A set of vectors are linearly independent if

k∑
j=1

cjbj = 0 implies that cj = 0 for all j = 1, 2, . . . , k.

Additionally, the set of all linear combinations of the vectors in β is called the span of β. A basis
is a set of vectors that are both linearly independent and spanning.

The conjugate of a complex number z = a+ bi will be denoted by z = a− bi. If B is an n× k
matrix with complex entries,

B = (bj,l : j = 1, 2, . . . , n, l = 1, 2, . . . k, )

then the conjugate transpose of B is the k × n matrix B∗ given by

B∗ =
(
bl,j : l = 1, 2, . . . k, j = 1, 2, . . . , n

)
.

The inner product of two vectors bj and bl is defined by

(bj ,bl) = b∗l bj

Note that the inner product of two vectors is a single complex number. Two vectors are said to be
orthogonal if their inner product is equal to zero. A set of non-zero vectors is said to be orthogonal
if every pair of distinct vectors from it are orthogonal.

The length or norm of a vector b is defined by

‖b‖ =
√

b∗b.

A set β of non-zero vectors is said to be orthonormal if β is orthogonal and the length of each
vector in β is one.

Theorem 1. If {b1 · · ·bk} is orthogonal, then {b1 · · ·bk} is linearly independent.

Proof. First, assume that c1b1 + · · ·+ ckbk = 0. To show linear independence, we must show that
c1 = c2 = · · · = cn = 0. To do this, fix a j ∈ {1, 2, · · · , n}. Now, compute the inner product of our
first equation with b∗j .

b∗j (c1b1 + · · ·+ cjbj + · · ·+ ckbk) = b∗j0

Using the distributive law, we obtain the simplified equation

c1b∗jb1 + · · ·+ cjb∗jbj + · · ·+ ckb∗jbk = 0 (1)

And by orthogonality,

b∗jbl =

{
0 if j 6= l

‖bj‖2 if j = l

So, using this information in conjunction with (1),

c1 (0) + · · ·+ cj ‖bj‖2 + · · ·+ ck (0) = 0

This shows that cj ‖bj‖2 = 0; however, since we know that bj is nonzero, it must be true that
cj = 0. And, since j was arbitrary in {1, 2, · · · , k}, we have completed our proof.
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Corollary 1. If {b1 · · ·bn} is an orthogonal set in Cn, then it is a basis for Cn.

Proof. By Theorem 1, the n vectors {b1,b2, · · · ,bn} are linearly independent. Since the dimension
of Cn is n, it follows that the vectors must form a basis for Cn.

Given the basis β = {b1 · · ·bn} in Cn, we will define the basis matrix, B, as the n× n matrix
whose columns are composed of the basis vectors bi, for i = 1, 2, · · · , n.

Theorem 2. If β is a basis in Cn, then the associated basis matrix, B, is invertible.

Proof. From basic linear algebra, we know that B will be invertible if and only if Bx = s has a
solution for all s in Cn. Let s ∈ Cn. Since β is a basis for Cn, there exists a vector x whose
components are the scalars x1, x2, · · · , xn, such that

s = x1b1 + x2b2 + · · ·+ xnbn

So, Bx = s has the solution x = c, where c is a vector of scalars that satisfies the above equation.
To show uniqueness, suppose there exists a vector y such that y 6= x and By = s. Then, it is true
that

B (c− y) = Bc−By = s− s = 0,

which yields
(c1 − y1) b1 + · · ·+ (cn − yn) bn

Since all of the indices are linearly independent, we say that ci − yi = 0 for all i in N. However,
this introduces a contradiction since y = c = x. This shows uniqueness, which proves that B is
invertible.

Theorem 3. Let β be an orthogonal basis in Cn with the associated basis matrix B. Then B∗B
is a diagonal matrix.

Proof. The (j, l) entry of B∗B is b∗jbl. However, because the vectors are orthogonal, we have

b∗jbl =

{
0 if j 6= l

‖bj‖2 if j = l

Hence,

B∗B =


‖b1‖2 0 · · · 0

0 ‖b2‖2 · · · 0
...

...
. . .

...
0 0 · · · ‖bn‖2



Corollary 2. If {b1 · · ·bn} is an orthonormal basis in Cn, then the associated basis matrix B is
orthonormal.

Proof. We need to show that B∗B = I, where I is the n×n identity matrix. However, this directly
follows from Theorem 3 and the property of orthonormality.

Note the implication that if the columns of B are orthonormal, then B−1 = B∗.

3 Overview of the Compression/Decompression Process

For our purposes a signal is a vector s in Cn. Usually, n will be quite large. The individual entries
in a signal, s, are samples that represent the values of some continuous waveform, s(t), at discrete
times. We will always assume that the samples are evenly spaced in time; in other words, we
assume that they were obtained at a constant sampling frequency, which we will denote as fs. For
example, if we sample an audio signal, s(t), at the standard rate of fs = 44, 100 hertz for T = 5
seconds, the result will yield a signal vector s with n = fsT = 220, 500 samples.
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Both the Fourier and wavelet compression algorithms studied in this project have equivalent
overall structure. The original signal, s, is written in terms of some basis, β, in Cn:

s = Bc = c1b1 + c2b2 + · · ·+ cnbn (2)

The vector c = (c1, c2, · · · , cn) is called the coefficient vector of s with respect to the basis β. By
the results of the previous section, we have shown that c = B−1s. Depending on the nature of the
signal, s, and the basis, β, it is likely to occur that many of the components of the coefficient vector
are close to zero. If this is the case, those coefficients that are close to zero are able to be ignored,
and an accurate approximation of the original signal can be created by saving only the coefficients
that are “large enough”. A thresholding function is used to determine what “large enough” means
in the context of any given compression. Thus, compression algorithms all have the same top-level
form:

Original Signal → Linear Transform → Thresholding → Compressed Signal

The process of reconstructing the now compressed signal is simply taking the linear combination
of basis vectors that are specified by the compressed coefficients:

Compressed Signal → Linear Transform → Reconstructed Signal

Now that we have the big-picture idea, we must acquire notation in order to properly model the
compression.

The thresholding process is mandatory to the compression process. In this project, we will
consider only the “all or nothing” thresholding:

χτ (x) =

{
x if |x| ≥ τ
0 if |x| < τ

The thresholding function χ is applied component-wise to the coefficient vector c:

χτ (z) = (χτ (z1), χτ (z2), · · · , χτ (zn)) , for z ∈ Cn

As can be seen from this piece-wise function, if χτ (x) is below τ , our thresholding value, then that
corresponding data will be set to zero. So, for every piece of data that is below the set threshold,
additional bytes are removed from the original size of the file; hence, the higher the threshold, the
smaller the compressed file, and the lower the threshold, the more space the compressed file will
take, but the quality of the file will have more integrity.

After the thresholding takes place, we are left with only the most important signal components
since the rest have been set to 0. We will denote these threshold components by c0:

c0 = χτ (c)

The actual data compression is achieved by only saving the non-zero components of c0 along with
their indices. Thus, we may visualize the compression process as

s→ B−1 → c→ χτ → c0

or equivalently,
c0 = χτ

(
B−1s

)
However, it is only practical to perform this process if we end with a signal that we are able to use.
So, we must decompress c0 in order to obtain a useful, reconstructed signal. The reconstruction
process applies the saved coefficients, c0, to the basis β, resulting in the reconstructed signal, s0:

s0 = Bc0 = BχτB−1s.

A relevant question at this point in the process is how well the reconstructed signal, s0, approxi-
mates the original signal s. One measure of this is the size of the residual vector s− s0:

‖s− s0‖ =

(
n∑
k=1

(s (i)− s0 (i))2
)1/2
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We have the following result relating the size of the residual vector to the signal components that
were “thrown away” during the compression process.

Theorem 4. For any basis β of Cn we have

‖s− s0‖2 = (c− c0)∗B∗B(c− c0)

In particular, if β is an orthonormal basis, then ‖s− s0‖ = ‖c− c0‖.

Proof. Recall that
s− s0 = B (c− c0)

So,
‖s− s0‖2 = (s− s0)∗ (s− s0) = (c− c0)∗B∗B(c− c0)

The ideas that have been introduced in this section will now be applied to specific bases. In
Section 4, we will use the Fourier basis, which is derived from the complex exponentials e2πift. In
Section 5, we turn to the wavelet basis consisting of shifts and translations of the Haar wavelet.
Matlab code that implements compression using these bases has been written, and is included in
the appendix. We note that the bases used in both the Fourier and wavelet compression techniques
are orthogonal.

4 Fourier Method

The Fourier Transform is an operation that takes a complex-valued function and transforms it
into another complex-valued function. In this paper, we will denote the Fourier Transform by
FT. For one-dimensional transforms, we can view the process as mapping Cn into itself. These
one-dimensional transforms can be applied to audio files. In this type of application, the function
begins in the time domain and the FT transforms the data into a set in the frequency domain. This
allows us to analyze sound files based on frequencies. Straight away we can see that this is highly
appealing for use in data compression. For example, the human ear can only hear frequencies in a
certain range; so, using the FT, we can get rid of some data right away. We will now explore the
mathematics of the Discrete Fourier Transform. We will do this by identifying the basis, β, in the
DFT case. Consider the basis matrix

β = F =
(
e−2πimn/N : 0 ≤ n,m ≤ N − 1

)
where m stands for the row index and n is for the column index. The columns of B form the
Fourier basis, β.

Fs = S

In order for the Fourier basis to be mathematically sound, we must show that it follows the
properties from our general basis. The following theorem proves its orthogonality.

Theorem 5. F∗F=FF∗=NI.

Proof.

(F∗F)j,l =
N−1∑
k=0

fk,jfk,l

=
N−1∑
k=0

e2πikj/Ne−2πikl/N

=
N−1∑
k=0

e2πik(j−l)/N
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This presents two cases; one where j = l and the other when j 6= l. When j = l, each term in the
sum is 1, so the sum is N . We will represent the second case, where j 6= l, by∑

rk, for r = e2πi(j−l)/N

Now, by the geometric series ∑
rk =

1− rN

1− r

=
1− e2πi(j−l)

1− e2πi(j−l)/N
= 0

because e2πi(j−l) = 1.
Therefore,

(F∗F)j,l =

{
N if j = l

0 if j 6= l

and so, F∗F = NI. Similarly, FF∗ = NI.

Corollary 3. ‖s− s0‖2= N ‖c− c0‖2

In addition to being able to compress one-dimensional data, like audio files, we can extend the
Fourier Transform to higher dimensions, which allows us to compress image data. Before, we took
the Fourier Transform of each sample in a row, saved the data depending on the threshold, and
then recreated a row with the kept data. Now, however, we simply extend this process to rows
and columns. So, we perform a similar process for the first row, step down a column, perform the
process again, and iterate this step until we have gone through the n × n matrix. An equivalent
process is performed when reconstructing the image data.

4.1 Results

The process of compressing a data file can be done in a multitude of ways. In the Matlab code I
wrote for this project, I used an “all or nothing” approach. If the data point meets the thresholding
requirements, then that sample is kept; otherwise, it is thrown out and replaced with zero. The
code first takes the file and transforms it into the frequency domain by the mapping of the Fourier
Transform. Some of these frequencies have relatively large amplitudes, while others have rather
insignificant amplitudes. The frequencies that have large amplitudes hold more information than
the rest; so, it necessary to keep more data points with large amplitudes than low amplitudes. The
algorithm used for this project arranges the data points based on the frequencies’ amplitudes and
then proceeds to threshold according to the user input.

Figure 1: Frequency domain representation of an audio signal, showing the largest 50 percent of
frequencies in red.
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This figure is extremely useful in visualizing the thresholding process. If we set the thresholding
to keep fifty percent of the data, the algorithm finds the least important fifty percent and does not
keep it. Thus, only the top fifty percent is used in the recreated signal. Once it has recongized which
frequencies are kept and which are thrown away, it creates a new matrix, whose only information
is found in the kept frequencies. At this point, the Inverse Fourier Transform is taken, and the
signal is able to be played once again.

After the thresholding and recreation takes place, we are able to plot both the original file and
the decompressed file superimposed on one another. This allows us to observe discrepancies in the
time and frequency domain. The following figure shows this.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
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−0.8

−0.6

−0.4
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decompressed
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Figure 2: Time domain representation of an original file, blue, and its compressedcounterpart, red.
The thresholding ratio is 2-1.

Upon careful observation of this figure, however, we are able to notive a difference between
the original file and its decompressed counterpart. This discrepancy will be discussed later in this
section.

Throughout much experimentation with data compression using the Fourier Transform, we will
find that the method works better with some signals than others. For example, after observing the
basis and the general nature of the Fourier transform, it is true that smooth, continuous signals are
optimum for this method. However, before exploring different types of signals, we must first have
an understanding of the unwanted products that are introduced by the Fourier Transform. This
product is the introduction of high frequency noise in the reconstructed signal, which we call an
artifact. There are certain characteristics that a signal can have that will introduce more artifacts
into the reconstruction. For instance, the Fourier Transform does not work well with sharp spikes
in amplitude. The sharp difference in amplitude will cause quantization errors that are spread
throughout the reconstructed signal.7 So, the longer the input signal, the more significant the
artifacts will become. Before we take a look at these various signal types, first we should be
aware that there are methods for lessening the artifacts. The easiest way to deal with this is
simply decrease the compression ratio. (The compression ratio is the ratio between the size of the
compressed signal versus the original signal). As we throw away more samples, we introduce more
jumps in amplitude, which is not ideal for the F.T. On the other hand, the lower the ratio, the less
efficient our compression is. In my code, the compression ratio is user input, so that the user is able
to experiment with what ratios work better with different signals. Another way to decrease the
amount of artifacts in the reconstructed code is to compress in windows. This method segments
the original signal into n parts, and each of these parts is compressed/decompressed individually.
So, if the signal is split into n sections, and the third section provides a significant ammount of
noise, those artifacts are not compounded in section four or the rest of the sections. Now that we
know why the F.T. performs poorly with some signals, we are able to analyze different signal types
and compare them based on the quality of the reconstructed signal. The following figure depicts a
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section of voice in the time domain.
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Figure 3: Magnification of an audio signal in the time domain. The red lines correspond to the
original signal, and the blue lines represent the reconstructed signal after a compression ration of 4
to 1. In the reconstructed signal, quantization errors introduced from the sharp jump in amplitude
just after sample 1500 have been spread throughout the signal.

As you can see, in the “silent” sections, that is, the sections to the left and right, the re-
constructed signal contains noise that was not present in the original signal. This is the visual
representation of an artifact. This particular artifact was created by the quantization error in
the sound-byte, which is compounded the longer the signal is. If we compare Figure 3 with the
following figure,
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Figure 4: The same section of audio signal from Figure 3, but with a compression ratio of 2 to 1.
Quantization errors are still spread throughout this signal, but there are less of them due to the
lower compression ratio.

While, at first glance, these two images may appear equal, the reader should note the values on
the y-axis of the graph. The artifacts from the first figure have a magnitude rougly three times as
large as the second figure. Now, we will view a section from a signal that contains a man humming.
The hum will immediately follow dialogue.
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Figure 5: The red lines correspond to the original signal and the blue lines to the reconstructed.
This file was compressed at a 4 to 1 ratio.

The following figure represents the same sound-byte, but with a different commpression ratio.
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Figure 6: The previous sound byte, but with a compression ratio of 2 to 1.

If we compare these two, previous figures, we conclude that there is little difference among
them, eventhough they were compressed at very different ratios. Recalling the difference in the
reconstructed signals from the first signal we looked at, we must conclude that the nature of the
second sound correlates to the Fourier Transform in a “nicer” way. This makes sense if we recall
that the F.T. correlates to signals based on a sine wave. So, input signals that are smooth and
continuous, like a sine wave, will work best with the Fourier Transform. Now we will analyze how
the Fourier Transform reacts with a bird-song. If we think about the nature of a bird song, we
might be able to predict how well this method will work. Bird songs are somewhat erratic with
sharp starts, stops, and quick changes in frequencies. This seems like a signal that would introduce
many artifacts into the reconstructed signal.
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Figure 7: A time domain representation of the song of an American Robin. Green depicts the
original signal.

We can see in this figure, that the parts of the signal with information have high integrity in
regards to the reconstructed signal being very similar to the original signal.
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Figure 8: A magnification of the silent portion of Figure 7.

Here, we see that the Fourier Transform introduces many artifacts to the reconstructed signal,
here represented by blue. The artifacts are so significant here is because of the sharp changes in
the signal on either side of the silence; that is, the sine wave correlates poorly with the spikes
in amplitude of frequency. Now that we know some of the characteristics of signals that behave
poorly with the Fourier Transform, let’s think of a type of signal that will work very well with this
type of compression. Since breaks in noise is bad, let us recognize that we need a continuous noise
in our signal. Secondly, sharp changes in amplitude of frequency is also bad; so, if we choose a
signal that is in a close range of frequencies, within an octave, and has consistent volume, we can
predict that the reconstructed signal will have high integrity with the original.
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Figure 9: The introduction of “Californication” by the Red Hot Chili Peppers in the time domain.

We can see in the figure that with a compression ratio of 9 to 1, which is a very rigorous ratio
(only 10 percent of the original data is kept), that very little artifact is introduced. If one listens
to this difference, the reconstructed signal will have a slightly “hollow” sound, on account of so
much information being thrown away; however, the quality is remarkable for such a compression
ratio. This result is directly correlated with the behaviour of the original signal. The figures used
in this section are products from my Matlab code.

4.2 Image Compression

Analyzing image files is a little different than audio files, mainly because these files are visual
rather than audible. For example, before, we discussed how the compression of audio files created
a “hollow” sound in the reconstructed signal; that is to say, it took a sharpness away from the
original file. This same type of effect happens with picture files. The figures below show the
difference between the original file and the reconstructed file.
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Figure 10: This is the original image of the famous image compression model “Lenna”8 .
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Figure 11: The reconstructed “Lenna” from Figure 10 with a threshold of 80 percent.

We see that the sharpness and definition of the lines in the picture begin to blur when the
decompression takes place. In previous sections, we also discussed the difference between the
original file and the reconstructed file; or, more specifically, ‖s− s0‖. When analyzing image
compression, we are able to create a figure of this very difference.
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Figure 12: This is the space domain representation of the difference between the images from
Figure 11 and Figure 10

Artifacts are slightly different when present in the image files. In order to create a better
visualization of these artifacts, we will construct the image below.
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Figure 13: The image was created in Matlab and depicts a black circle on a white background.
The parameters of the image are able to be changed by the user.
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Figure 14: The image of the reconstructed image. In this compression, 90 percent of the data was
kept.

In the reconstruced picture, we are able to see a pattern that was not present in the original
file. In this two-dimensional compression, artifacts create a type of “ripple” effect. Much like in the
audio files, where artifacts are introduced at the “edges” of the data in the space domain, artifacts
in picture files are created where there are hard-lines with a sharp contrast of color. In a black and
white case, artifacts are very significant because white is represented by the number 0, and black
is represented by the number 1. So, when the Fourier Transform is taken of these neighboring
0’s and 1’s, artifacts are introduced. If we recall the method of thresholding in the compression
process, we remember that the unwanted data is set to the value of 0; or, in this case, the color
white. Therefore, when the thresholding is more aggresive, we receive more artifacts, since there
are more data points that contrast with their neighbors in the matrix.
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Figure 15: This figure is the space domain representation of the difference between the original
cirlce file, and the compressed file.

Here, we can easily see that the largest difference in the data is around the edge of the circle.
This is a direct consequence of the artifact phenomenon.

5 Wavelet Method

A wavelet is a single oscillation of a signal that is used to corrolate to information in signal
processing. There are many types of wavelets; however, the Haar wavelet was used in this project.
The original wavelet is called the Mother Wavelet. This Mother Wavelet can be shifted and scaled
in order to more closeley correlate with the input signal. The piece-wise function of the Haar
Wavelet is depicted in the following figure.
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Ψ (t) =


1 if t ∈ [0, 1/2)
−1 if t ∈ [1/2, 1)
0 otherwise

The idea of wavelet analysis is to correlate a signal against shifted and scaled versions of the
Mother wavelet. These so-called daughter wavelets are of the form

Ψa,b(t) =
1√
a

Ψ
(
t− b
a

)
The parameter a is the scale factor, and b is the shift factor. The factor 1√

a
is a normalizing

constant that insures that ∫ ∞
−∞
|Ψa,b(t)|2 dt = 1,

which means that all daughter wavelets will have the same energy.
We will now explore the continuous wavelet transform of s. Let s be a signal defined on [0, 1).

The continuous wavelet transfrom of s is the function C (a, b), which is called the Haar Wavelet
Transform, is defined by

C (a, b) =
∫ 0

1

s (t) Ψa,b (t) dt

Theorem 6. If Ψa,b is the normalized Haar wavelet, then

C (a, b) =
1√
a

(∫ b

b+ a
2

s (t) dt−
∫ b+ a

2

b+a

s (t) dt

)
Attached to this paper is code from Maple that shows the Haar wavelet transform for various

signals.
Now we must ask ourselves what the Haar Wavelet Transform produces. Depending on our

choice of (a, b), the Transform will yield various answers; fortunately, we can deduce what these
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values mean. If (a, b) produces a relatively large wavelet coefficient, C (a, b), then that means that
there is a high correlation between the daughter wavelet, Ψa,b (t), and the original signal s (t). On
the other hand, if the wavelet coefficient is relatively small, then the daughter wavelet has a low
correlation with s (t).

Let us first fix k ≥ 0 for all k in Z+, and consider a set, Ak of daughter Haar wavelets given by

Ak =
{

Ψa,b (t) : a = 2−k, b = j2−k, 0 ≤ j ≤ 2k − 1
}

In this figure, we have depicted the first three levels of our Harr bases. Observing this figure,
we note that no two parts of Ak overlap; in other words, their supports (the vertical lines), belong
to only one of each of the daughter wavelets. Now, we denote our bases by the function

βn =
n−1⋃
k=0

Ak

Theorem 7. βn is an orthonormal set with respect to the inner product defined by

(f, g) =
∫ ∞
−∞

f (t) · g (t) dt

Proof. It is straightforward that βn is orthonormal from the equation∫ 1

0

Ψk1,j1 (t) Ψk2,j2 (t) =

{
0 if k1 6= k2 or j1 6= j2

1 if k1 = k2 and j1 = j2

We remark that for any continuous function s : [0, 1) ∈ R, it can be shown that there exists a
sequence of functions sn such that

1. sn ∈ span (βn)

2. ‖s− sn‖2 → 0 as n→∞

It then follows from these two properties that

β =
∞⋃
n=0

βn

forms a basis for all continuous functions that are defined on [0, 1). It should also be noted that

|βn| = 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1 ,

which implies that the span of βn is a vector space of dimension 2n − 1.
Studying the projections of arbitrary signals onto these subspaces is the essence of wavelet

analysis. Since βn is an orthonormal basis for the span(βn), the orthogonal projection of a signal,
s (t), onto span(βn) = Wn. This is given by

sWn
(t) = projWn

(s (t)) =
n−1∑
k=0

2k−1∑
j=0

ck,jΨk,j (t) ,

when ck,j is defined as

ck,j =
∫ 1

0

s (t) Ψk,j (t) dt

The process of the computation of the projection of s (t) onto Wn of various signals can be
viewed on the attached pages at the end of the paper.
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5.1 Results

The methods of analyzing the results from wavelet compression are similar to those of studying the
Fourier Transform results. First, let us start by simply viewing the original file and decompressed
file in the time domain.
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Figure 16: This is the time domain representation of the first six seconds of Vivaldi’s “Concerto
in G Minor for Violins”. The blue represents the original file and the green depicts the com-
pressed/decompressed file. It was compressed at a ratio of 4 to 1.

By observation, the two signals look to be very similar. Now we will look at a few magnifications
of the previous figure.
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Figure 17: This is a segment from the first half second of Figure 16, which is silent.

As the reader can see, this method of compression seems to be tailor-made for silent clips of
audio. There are a few oscillations that have a relatively large amplitude, which the daughter
wavelet attempts to correlate with; however, on the whole, the Haar wavelet recognizes that the
signal has almost zero information and matches that observation. In a way, this result produces an
effect that is even better than the original file. In most cases, when silence is recorded, background
noise is unwanted; however, there is always some noise present. With this method of compression,
that noise is completely squelched and pure silence is obtained.
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If we magnify a different part of the signal, where information is present, we obtain the following
figure.
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Figure 18: This is a magnification of a very small section of the sound file. The green depicts the
attempt of the daughter wavelets to correlate with the original signal, which is in blue.

While there are many silimarlities between the original and decompressed file, there are obvious
discrepancies between the two. This is a part of the original section that wavelets do not correlate
well with. That is to say, the smooth, continuous part of a signal. The nature of the Haar wavelet
is one that is sharp; and, while having more daughter wavelets helps this weakness, artifacts are
created from the difference in signals. The “sharp” endges of the wavelet introduce high frequencies
into the recreated signal. The following figure depicts the introduction of these high frequencies.
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Figure 19: The frequency domain representation of a sound file. The blue segments depict the
reconstructed signal. The reader should also note that this figure has a symmetry of its frequencies
that begin reflecting at about 2,250 hertz.

As you can see from the figure, the reconstructed segments have larger magnitudes at frequencies
from 1800 to 2600 hertz. These are the frequencies that are introduced through the compression
process. Much like with the Fourier transform, we can deduce certain types of signals that have
potential to work better with the wavelet compression. We want a signal that has a “sharp”,
discontinuous nature. A bird song is a good example of such a signal.
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Figure 20: The top half of this figure depicts the time domain representation of a song of the
American Robin; the bottom half shows the frequency domain.

Viewing the frequency domain, we observe that the variation from the original signal is not
very significant. This is because the wavelets correlate well with the sharp variations of frequency
and variation in the bird song.

6 Conclusion

In this paper, we have discussed various methods of data compression from the mathematical
background up to the code that actually compresses the files. Through this process, we have also
seen many signals and discussed behaviors of signals that correlate better with some methods than
others. For example, a bird chirp correlates extremely well by the Haar wavelet compression, but
it does not work well with the Fourier Transform. This result arises from the basic nature of the
Haar wavelets; they are discontinuous, so they correlate well with discontinuous signals. On the
other hand, smooth, continuous signals work better with the Fourier Transform since the Fourier
Transform correlates well with continuous signals.

Standard computer technology has built on the ideas we have discussed in this paper, adding
new techniques, such as block coding, compressive sensing, and others. 7 These technologies have
evolved and become an ubiquitous part of information technology.
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8 Appendices: Matlab Code

The following appendix contains Matlab code implementing the Fourier and wavelet compression
and decompression algorithms discussed in this paper.
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