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Abstract: Ranaviruses are an important wildlife pathogen of fish, amphibians, and reptiles. Previous
studies have shown that susceptibility and severity of infection can vary with age, host species, virus
strain, temperature, population density, and presence of environmental stressors. Experiments are
limited with respect to interactions between this pathogen and environmental stressors in reptiles. In
this study, we exposed hatchling red-eared slider turtles (Trachemys scripta elegans) to herbicide and
ranavirus treatments to examine direct effects and interactions on growth, morbidity, and mortality.
Turtles were assigned to one of three herbicide treatments or a control group. Turtles were exposed
to atrazine, Roundup ProMax®, or Rodeo® via water bath during the first 3 weeks of the experiment.
After 1 week, turtles were exposed to either a control (cell culture medium) or ranavirus-infected
cell lysate via injection into the pectoral muscles. Necropsies were performed upon death or upon
euthanasia after 5 weeks. Tissues were collected for histopathology and detection of ranavirus DNA
via quantitative PCR. Only 57.5% of turtles exposed to ranavirus tested positive for ranaviral DNA at
the time of death. Turtles exposed to ranavirus died sooner and lost more mass and carapace length,
but not plastron length, than did controls. Exposure to environmentally relevant concentrations of
herbicides did not impact infection rate, morbidity, or mortality of hatchling turtles due to ranavirus
exposure. We also found no direct effects of herbicide or interactions with ranavirus exposure on
growth or survival time. Results of this study should be interpreted in the context of the modest
ranavirus infection rate achieved, the general lack of growth, and the unplanned presence of an
additional pathogen in our study.

Keywords: atrazine; Roundup; Rodeo; glyphosate; reptile; iridovirus

1. Introduction

In the last two decades, biologists have become alarmed about potential impacts of
iridoviruses, which infect and can cause mass mortality events in reptiles, amphibians,
and fishes [1]. Iridoviruses are double-stranded DNA viruses that replicate in temper-
atures ranging from 12–32 ◦C and may survive several months outside of any host in
aquatic environments [2]. Studies on iridovirus pathogenesis and disease ecology have
demonstrated that susceptibility and severity of infection vary with age, host species, virus
strain, temperature, population density, and presence of environmental stressors [3–10].
Among fish, iridovirus infections have been reported on several continents and can cause
economic damage in commercial freshwater fisheries [9,11,12]. In amphibians, ranaviruses
(family Iridoviridae, genus Ranavirus) have caused more die-offs in North America than the
better-known fungus, Batrachochytrium dendrobatidis (Bd) [13,14]. The impact of ranaviruses
on reptilian population dynamics is largely unknown, although several cases of morbidity
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and mortality in captive and natural populations have been attributed to this pathogen
(reviewed in [12,15–17]).

Studies on ranavirus in turtles have included isolation of ranaviruses from natural
populations and reports of deaths and declines in captive and wild species [12,18,19];
experiments have examined susceptibility and transmission of ranavirus between species
and the importance of exposure dose and rearing temperature to host susceptibility and
mortality [18,20–24]. While ranavirus outbreaks with high mortality may result in dis-
concerting headlines, limited surveys have also found ranavirus infection occurring at
low prevalence in populations without apparent die-offs [25–27]. Ranavirus is now well
documented on six continents [12], but significant questions remain regarding distribution
and factors influencing morbidity and mortality in wild reptile populations. Experimental
studies examining the effect of environmental stressors on ranavirus infection are espe-
cially lacking in reptiles. Thus far, temperature is the only environmental variable that has
been experimentally investigated for impact on ranavirus susceptibility and survival in
reptiles [28].

The current study examined potential interactions among a common environmental
stressor, herbicides, and ranavirus exposure in juveniles of a largely aquatic turtle, Trachemys
scripta elegans. This species has a wide geographic distribution in central and eastern US,
occupies diverse habitats including bogs, ponds, lakes, and rivers, spends ample time in
the water [29], and can be a reservoir for ranaviruses that infect more susceptible species,
including those from other vertebrate classes (reviewed in [12,20]). Research on infectious
diseases in chelonians is needed because over half of species in this taxon are listed as
vulnerable, threatened, or endangered according to the IUCN [30].

Pesticides are a multibillion-dollar annual industry and are used more heavily in the
Unites States than in many other countries; these products are found in over half of the
country’s streams and many other surface waters [31–33]. Herbicides and insecticides enter
aquatic systems via runoff from agricultural and urban uses and via direct application
to water bodies [34]. In aquatic systems, these chemicals can have profound impacts on
the biodiversity and productivity of and interactions among organisms [35]. Chemical
pollutants can impact host–pathogen interactions by deactivating or killing the pathogen,
or by directly and indirectly weakening the host immune response, thus increasing suscep-
tibility to disease [36,37]. Stress hormones such as cortisol and corticosterone can become
elevated in response to environmental pollutants and decrease host immune response,
which increases susceptibility to infectious diseases [38,39]. Commonly used pesticides
applied at sublethal doses can reduce immune response and resistance to parasites [40–43].
Pesticides have also been shown to negatively impact growth and survival, and they can
change sexual characteristics in amphibians and reptiles [44,45]. Thus far, the interaction
between pesticides and ranavirus infection have been studied in amphibians [46–48] but
not in reptiles.

We exposed juvenile turtles to three commonly used herbicides that contain two
different main active ingredients, glyphosate and atrazine, to determine whether these
chemicals altered growth rates and susceptibility, morbidity, and mortality due to ranavirus
exposure. Glyphosate is the most heavily used herbicide in the United States, due largely
to the increasing dominance of crops that are genetically engineered to be resistant to this
herbicide [49,50]. Surfactants, which help the herbicide to penetrate plant leaves, are com-
mon ingredients of these products, yet are generally not tested or listed on labels although
they can be equally or more toxic than glyphosate [44,51,52]. Therefore, we examined
glyphosate exposure via water bath containing two glyphosate formulations: Roundup
ProMax®, which is formulated for terrestrial use and, therefore, contains surfactants, and
Rodeo®, which is formulated for aquatic use without surfactants. Atrazine is the second
most commonly used herbicide in the United States and is the most common pesticide
found in US streams and groundwater [32,53]. Because of its impacts of growth, develop-
ment, and reproduction in various species and persistent half-life of up to 19 months in
water, this herbicide has been banned from use in the European Union since 2004 [36,54].



Viruses 2021, 13, 1440 3 of 19

However, controversy exists surrounding the nature and magnitude of atrazine impacts in
ecological communities [55–57].

Because of the aforementioned impacts of glyphosate and atrazine on reptilian growth,
development, and survival, as well as the interaction of pesticides and ranavirus in studies
conducted on amphibians, we expected similar effects in our experiment with T. s. elegans.
Specifically, we predicted that exposure to herbicides would negatively impact growth
and survival and increase morbidity and mortality due to ranavirus infection relative to
controls not exposed to herbicide treatments.

2. Materials and Methods

We obtained 170 juvenile red-eared slider turtles from a commercial supplier (Reptile
City; Dallas, TX, USA) in May of 2014. Ten turtles were immediately euthanized by injection
of >130 mg/kg sodium pentobarbital injection into the supravertebral (subcarapacial) vein,
followed by decapitation 1 h after injection. These turtles were necropsied to obtain the
following tissues which genomic DNA was then extracted from: approximately 4 cm of
mid- and distal intestine, the left kidney, and the left lobe of liver. Testing via quantitative
polymerase chain reaction (qPCR; described below) for ranaviral DNA was performed
to ensure that supplied animals were not infected with ranavirus. Upon confirmation of
negative results for the subsample of 10 turtles, the remaining 160 turtles were placed
individually in 5 L plastic containers containing 350 mL of filtered, dechlorinated tap water.

Laboratory temperatures were maintained between 19.5–28 ◦C with an average tem-
perature of 24 ◦C. A natural photoperiod (approximately 6:00 a.m.–8:30 p.m. for May–June
in Virginia) supplied by large windows in the room was supplemented by overhead flu-
orescent lights during 9:00 a.m.–6:00 p.m. Throughout the experiment, we fed turtles
approximately 10% of their weight in Zoo Med natural aquatic turtle feed every other day.
Turtle enclosures were placed on shelves in our laboratory and rotated weekly to avoid
any bias due to position within the laboratory. Paper dividers were placed between each
container and on the outside edge, to reduce possible stress.

After 3 days of acclimation to the laboratory conditions, turtles were assigned to one
of eight experimental treatments (N = 20 for each) in a full factorial design with two factors:
ranavirus exposure (control, ranavirus-exposed) and herbicide exposure (control, Roundup
ProMax®, Rodeo®, atrazine). At the initiation of the experiment, we collected initial weights
and measurements of each turtle (mass in g; width and plastron and carapace length in
mm using digital calipers) and collected 3–4 mm from each tail tip using disposable sterile
scalpel blades and sealed the wound with KwikStop Styptic Powder (containing benzocaine
anesthetic; Miracle Care, Dayton, OH, USA). These tissue were collected to sample initial
conditions in the event that any turtles not exposed to ranavirus during the experiment
turned out to be ranavirus-positive at the conclusion. However, this scenario did not occur;
thus, these tail tissues were not tested for ranavirus.

Herbicide exposure consisted of herbicide addition (or lack thereof, for controls)
in 200 mL of water in housing containers during the first 3 weeks of the experiment.
Herbicide-free dechlorinated water was used for all turtles during the remaining 2 weeks
of the 5 week experiment. Levels of herbicide exposure were based on the higher end of
but not maximal concentrations reported in the literature: 2000 µg a.e./L glyphosate for
Roundup ProMax® and Rodeo® [58,59] (Monsanto, Creve Coeur, MO, USA) and 20 µg/L
for atrazine (Hi-Yield Voluntary Purchasing Groups, Bonham, TX, USA) [53,60,61].

To constitute treatment water for glyphosate herbicides, 33.4 µL of Rodeo and 29.6 µL
of Roundup ProMax® were each added to 500 mL of water and mixed on a stir plate on
high for 10 min. We then added each 500 mL stock solution to 7500 mL of water in a large
bucket and stirred each by hand for 5 min. For the atrazine treatments, we added 20.1 µL
of Hi-Yield Atrazine® to 600 mL and mixed this on a stir plate on high for 10 min. An
aliquot of 100 mL of this stock solution was then added to 7900 mL of water in a large
bucket and stirred by hand for 5 min. In two different weeks, we took samples from the
three final herbicide solutions and shipped them overnight on ice to the Mississippi State
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University Chemical Laboratory to verify target concentrations. Actual concentrations of
water samples were 2048–2223 ppb and 1952–2292 ppb for glyphosate in Roundup Pro
Max® and Rodeo®, respectively, and 22–27 ppb for atrazine.

Ranavirus exposures were conducted 1 week after initiation of the experiment. Be-
cause water bath exposure to ranavirus can result in low infection rates (0–20% in three
turtle species [62], we used injection of ranavirus as our exposure method to maximize
the potential for infection [28,63–65]. Ranavirus exposure was executed at the start of the
second week by injection of 100 µL of virus-infected cell lysate (6.3 × 104 TCID50; FV3
ranavirus culture originally isolated from a box turtle isolate grown in fathead minnow
cells (similar procedure described in [28]), with 50 µL injected into each pectoral muscle.
Control turtles were each injected with 50 µL of Dulbecco’s modified Eagle medium (used
for fathead minnow cell culture; Thermo Fisher Scientific, Waltham, MA, USA) in each
pectoral muscle.

Each week, turtles were weighed, measured, and placed in cleaned, disinfected
tubs with reconstitutions of herbicide treatments for the first 3 weeks or herbicide-free
dechlorinated water for the last 2 weeks. After virus exposures, turtles were checked
visually every 12 h for external signs of ranavirus infection: lethargy, respiratory stress,
cutaneous erythema, and ocular/nasal discharge. During weekly measurements and water
changes, turtles were examined while in hand for ranaviral disease signs. When turtles
expired before the completion of the experiment, they were examined and sampled as
described below following euthanasia done at the conclusion of the experiment. Turtles
were considered deceased when unresponsive to stimulation of the limbs and corneas.
We weighed and measured, took note of and photographed any external signs of disease,
and then decapitated and necropsied the turtles. The color and condition of the liver was
noted, and tissue samples were taken from the intestine, kidney, and liver, as previously
described. Tissues were frozen at −80 ◦C until use in ranavirus testing. The remainder
of the turtle was preserved in 10% buffered formalin for histopathological examination.
The experiment was concluded after 5 weeks (4 weeks after virus exposures), when all
remaining living turtles were euthanized, measured, and sampled as described above.

We extracted DNA from tissue samples with Qiagen DNeasy Blood and Tissue Kits
(Qiagen, Hilden, Germany). We standardized the amount of genomic DNA used in each
reaction with an Epoch spectrophotometer (Biotek, Winooski, VT, USA). We tested for
presence of ranavirus DNA using quantitative polymerase chain reaction (qPCR) following
the protocol of Picco et al. [64]. Each 25 µL PCR reaction contained: 7 µL volume of
combined nuclease-free water and genomic DNA (volume specific to each individual for
50 ng DNA); 12.5 µL of TaqMan Universal PCR Master Mix (Applied Biosystems™, Foster
City, CA, USA); 1.5 µL each of 10 µM primers: F 5′–ACA CCA CCG CCC AAA AGT AC–3′,
R 5′–CCG TTC ATG ATG CGG ATA ATG–3′; 2.5 µL of 2.5 µM probe: 5′–/56-FAM/CCT
CAT CGT /ZEN/TCT GGC CAT CAA CCA /3IABkFQ/–3′ (Integrated DNA Technologies,
Coralville, IA, USA). All samples were tested in duplicate using Applied Biosystems™
StepOne Real-time PCR machine with two negative and two positive controls in each run
(pure water and DNA extracted from cultured FV3 ranavirus). Samples with Ct values <30
for both runs were considered positive for ranavirus, according to standards established for
this machine using known negative and positive controls from water, cultured ranavirus,
and ranavirus-infected reptiles [25,26]. If Ct values from two samples for an individual
were not both <30 or if one approximated 30, we ran two additional PCR reactions. Then,
the consensus from three out of four total reactions was used.

We conducted histopathology on four turtles from each combination of herbicide and
virus exposure (eight treatments, 32 turtles total). Four turtles with the lowest Ct values
were selected from each of the ranavirus-exposed treatment groups, and we performed
histological examinations of commonly infected tissues including the liver, spleen, pancreas,
and gastrointestinal tract. All turtle tissues were processed at the University of Tennessee
Veterinary Medical Center Diagnostic Laboratory where they were embedded in paraffin
blocks, cut into 5 µm sections, mounted on glass slides, and stained with hematoxylin
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and eosin. We examined tissues under light microscopy for signs of ranaviral infection, as
well as possible tissue lesions caused by herbicide exposure. All work in this study was
approved by the Hampden-Sydney College Animal Care and Use Committee, under the
protocol number 965 (approved 05 December 2014).

We used chi-squared tests of independence to compare ranavirus-positive and -negative
PCR results among herbicide treatments and to compare incidence of external white
growths (presumed fungus) and liver discoloration among herbicide treatments and
ranavirus exposure treatments. To examine potential treatment effects of days survived and
change in turtle mass, as well as plastron and carapace length, we used a weighted least
squares regression model with herbicide and ranavirus exposure and an interaction effect
as fixed factors, and time (day of measurement) as a fixed factor. We conducted our analy-
ses in SPSS® Statistics version 23 (SPSS Inc., Chicago, IL, USA) and created Figures 1 and 2
in R version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria) [66].
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3. Results

Herbicide treatment did not affect incidence of ranavirus infection among turtles
exposed to ranavirus (χ2 = 6.79, df = 3, p = 0.079), although there was a nonsignificant trend
for higher infection rates in the herbicide control group relative to other groups infected
with ranavirus (Table 1). Neither variable influenced liver color (tan or red), which was
observed in 69 out of 160 turtles at the time of necropsy (χ2 = 1.13, df = 3, p = 0.770; Table 1;
Figure 1). Neither herbicide treatments nor ranavirus exposure treatments affected the
incidence of flocculent white growths (typically circular; 1–3 mm in diameter), which were
observed in 65 out of 160 turtles at the time of necropsy (χ2 = 1.69, df = 3, p = 0.640; Table 1;
Figure 2). These growths were not observed upon receipt of the shipment of turtles, but
they were observed starting on the 10th day of the experiment and culminated in 1–23
growths per turtle, occurring on the skin but not the shells. We attempted to examine
the white growths under microscopy but were unable to determine the causal agent.
Histopathological changes in ranavirus-exposed turtles with the highest viral loads (lowest
Ct values) included necrosis (Figure 3a,b,d,f,g) and hemorrhage in the liver (Figure 3f),
hematopoietic necrosis in the pancreas (Figure 3e), and inclusion bodies consistent with
ranavirus (Figure 3b–d,f).

Ranavirus exposure decreased the number of days survived; however, there was no ef-
fect of herbicide treatment nor interaction effect between ranavirus and herbicide exposures
(Table 2; Figure 4). The average starting sizes of hatchlings turtles were 7.26 g (SD = 0.97),
33.32 mm in carapace length (SD = 1.54), and 32.07 mm in plastron length (SD = 1.53).
Ranavirus exposure negatively impacted change in mass and carapace length; however,
there was no effect of herbicide treatment nor interaction effect (Table 2; Figure 5a,c). Plas-
tron length was not impacted by either treatment or interaction between them (Table 2).
Turtles lost a smaller percentage of body mass in control groups (mean = −1.6, SE = 0.4%
per week) relative to ranavirus-exposed groups (mean = −3.3, SE = 0.5% per week). A
similar nonsignificant trend was apparent for plastron length (Table 2; Figure 5b) in con-
trol groups (mean = −0.2, SE = 0.1% per week) relative to ranavirus-exposed groups
(mean = −0.4, SE = 0.01% per week). Turtle carapaces grew slightly in control groups
(mean = 0.2, SE = 0.1% per week) but shrank slightly in ranavirus-exposed groups (mean
= −0.2, SE = 0.1% per week; Table 2; Figure 5c). Growth in all three measures varied signif-
icantly between weeks (Table 2), although no temporal trends were apparent (Figure 5).
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Table 1. Incidence of response variables at time of death among hatchling turtles (Trachemys scripta
elegans) exposed to herbicide and ranavirus treatments. Rv-exposed turtles were injected with 100 uL
of ranavirus-infected cell lysate (FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of
the experiment; controls were injected similarly with cell culture medium. Turtles were exposed
to herbicides via water bath during the first 3 weeks of the experiment. The criterion for ranavirus
infection (incidence in table) was Ct values <30 for duplicate quantitative PCR wells using intestine,
kidney, and liver tissue. Liver discoloration and external appearance of white growths were observed
upon necropsy. Necropsies were performed upon death prior to the end of the experiment or upon
euthanasia at the conclusion of the 5 week experiment.

Ranavirus
Treatment

Herbicide
Treatment N Incidence of

Infection
Liver Discol-

oration
White

Growths

Rv-exposed Atrazine 20 12 12 9
Rv-exposed Roundup 20 9 6 8
Rv-exposed Rodeo 20 9 8 11
Rv-exposed Control 20 16 10 12

Control Atrazine 20 - 9 9
Control Roundup 20 - 7 3
Control Rodeo 20 - 10 6
Control Control 20 - 7 7

Table 2. Results of GLM analysis with herbicide treatments, ranavirus exposure, and interaction
effect between the two variables as fixed factors, and time (weeks 1–5) as a covariate. For herbicide
treatments, hatchling turtles (Trachemys scripta elegans) were constantly exposed to four chemicals
(atrazine, Roundup, Rodeo, and control) during the first 3 weeks of the experiment via water bath
exposure. Ranavirus exposure consisted of injecting turtles with 100 uL of virus-infected cell lysate
(FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were
injected similarly with cell culture medium.

Response Variables Independent Variables df F p

Days survived Herbicide 3, 347 1.181 0.319
Rv exposure 1, 347 31.366 <0.001 *
Interaction 3, 347 0.235 0.872

Mass growth Herbicide 3, 347 0.68 0.565
Rv exposure 1, 347 7.933 0.005 *
Interaction 3, 347 0.582 0.627

Time 1, 347 17.886 <0.001 *
Carapace growth Herbicide 3, 347 0.401 0.752

Rv exposure 1, 347 6.861 0.009 *
Interaction 3, 347 0.149 0.931

Time 1, 347 13.539 <0.001 *
Plastron growth Herbicide 3, 347 0.286 0.836

Rv exposure 1, 347 2.761 0.098
Interaction 3, 347 0.053 0.984

Time 1, 347 8.529 0.004 *
*—Each asterisk indicates a significant relationship between the independent variable and response variable
(p < 0.05).
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Figure 3. Representative tissues from hatching turtles (Trachemys scripta elegans) experimentally exposed to herbicides and ranavirus. Hematoxylin and eosin stain. Images are large and 
labels are on each for the purpose of manuscript review. (a) Turtle 40 (atrazine, ranavirus-exposed), liver showing areas of necrosis; (b) Turtle 48 (atrazine, ranavirus-exposed), liver 
showing necrosis of hematopoietic tissue and intracytoplasmic inclusions in granulocytes; (c) Turtle 62 (Rodeo, ranavirus-exposed), liver showing inclusion body consistent with ra-
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Viruses 2021, 13, 1440 12 of 19Viruses 2021, 13, x  12 of 19 
 

 

 
Figure 4. Days survived for hatchling turtles (Trachemys scripta elegans) exposed to herbicide and 
ranavirus treatments. Rv-exposed turtles were injected with 100 uL of ranavirus-infected cell lysate 
(FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were in-
jected similarly with cell culture medium. Turtles were exposed to herbicides via water bath during 
the first 3 weeks of the experiment. All remaining turtles were euthanized at the conclusion of the 
5-week experiment. 

  

Figure 4. Days survived for hatchling turtles (Trachemys scripta elegans) exposed to herbicide and
ranavirus treatments. Rv-exposed turtles were injected with 100 uL of ranavirus-infected cell lysate
(FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were
injected similarly with cell culture medium. Turtles were exposed to herbicides via water bath during
the first 3 weeks of the experiment. All remaining turtles were euthanized at the conclusion of the
5-week experiment.

Viruses 2021, 13, x  13 of 19 
 

 

 
(a) 

  
(b) (c) 

Figure 5. Response variables for hatchling turtles (Trachemys scripta elegans) in a 5-week experiment wherein they were 
exposed to ranavirus (Rv-exposed), or not, for controls. Rv-exposed turtles were injected with 100 uL of ranavirus-infected 
cell lysate (FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were injected similarly 
with cell culture medium used for culturing the virus. Turtles were exposed to herbicides via water bath during the first 
3 weeks of the experiment; all groups are combined here because these treatments had no impact on the response variables 
shown here on the y-axes: change in mass (a), plastron (b), and carapace (c). Points represent the mean (±1 SE) for Rv-
exposed and control hatchlings for each week of experiment. 

4. Discussion 
Our study demonstrated decreased survival time and greater loss of mass and cara-

pace but not plastron length in juvenile turtles exposed to ranavirus as compared to con-
trols. For mass and carapace length, the effect size for ranavirus exposure was minimal 
and represented less loss in turtles in control as compared to treatment groups. Although 
we fed turtles regularly, we suspect they were mostly subsisting on residual yolk stores, 
since we observed residual yolks in many turtles at the time of necropsy. Yolk remains 
were only visible at necropsy in turtles who died at or before 21 days into the experiment, 
with one exception. This timing is similar to a previous study of the same species [67] in 
which fasted hatchling used up all yolk remains by the end of 21 days post hatching. 
However, our turtles may have been up to 1 week older than indicated by the days of our 
experiment, since we purchased juveniles rather than hatching them from eggs as in [67]. 
We observed some feeding by juvenile turtles, although it was limited and variable (we 

Figure 5. Cont.



Viruses 2021, 13, 1440 13 of 19

Viruses 2021, 13, x  13 of 19 
 

 

 
(a) 

  
(b) (c) 

Figure 5. Response variables for hatchling turtles (Trachemys scripta elegans) in a 5-week experiment wherein they were 
exposed to ranavirus (Rv-exposed), or not, for controls. Rv-exposed turtles were injected with 100 uL of ranavirus-infected 
cell lysate (FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were injected similarly 
with cell culture medium used for culturing the virus. Turtles were exposed to herbicides via water bath during the first 
3 weeks of the experiment; all groups are combined here because these treatments had no impact on the response variables 
shown here on the y-axes: change in mass (a), plastron (b), and carapace (c). Points represent the mean (±1 SE) for Rv-
exposed and control hatchlings for each week of experiment. 

4. Discussion 
Our study demonstrated decreased survival time and greater loss of mass and cara-

pace but not plastron length in juvenile turtles exposed to ranavirus as compared to con-
trols. For mass and carapace length, the effect size for ranavirus exposure was minimal 
and represented less loss in turtles in control as compared to treatment groups. Although 
we fed turtles regularly, we suspect they were mostly subsisting on residual yolk stores, 
since we observed residual yolks in many turtles at the time of necropsy. Yolk remains 
were only visible at necropsy in turtles who died at or before 21 days into the experiment, 
with one exception. This timing is similar to a previous study of the same species [67] in 
which fasted hatchling used up all yolk remains by the end of 21 days post hatching. 
However, our turtles may have been up to 1 week older than indicated by the days of our 
experiment, since we purchased juveniles rather than hatching them from eggs as in [67]. 
We observed some feeding by juvenile turtles, although it was limited and variable (we 

Figure 5. Response variables for hatchling turtles (Trachemys scripta elegans) in a 5-week experiment wherein they were
exposed to ranavirus (Rv-exposed), or not, for controls. Rv-exposed turtles were injected with 100 uL of ranavirus-infected
cell lysate (FV3; 6.3 × 104 TCID50) into the pectoral muscles after 1 week of the experiment; controls were injected similarly
with cell culture medium used for culturing the virus. Turtles were exposed to herbicides via water bath during the
first 3 weeks of the experiment; all groups are combined here because these treatments had no impact on the response
variables shown here on the y-axes: change in mass (a), plastron (b), and carapace (c). Points represent the mean (±1 SE) for
Rv-exposed and control hatchlings for each week of experiment.

4. Discussion

Our study demonstrated decreased survival time and greater loss of mass and carapace
but not plastron length in juvenile turtles exposed to ranavirus as compared to controls.
For mass and carapace length, the effect size for ranavirus exposure was minimal and
represented less loss in turtles in control as compared to treatment groups. Although we
fed turtles regularly, we suspect they were mostly subsisting on residual yolk stores, since
we observed residual yolks in many turtles at the time of necropsy. Yolk remains were
only visible at necropsy in turtles who died at or before 21 days into the experiment, with
one exception. This timing is similar to a previous study of the same species [67] in which
fasted hatchling used up all yolk remains by the end of 21 days post hatching. However,
our turtles may have been up to 1 week older than indicated by the days of our experiment,
since we purchased juveniles rather than hatching them from eggs as in [67]. We observed
some feeding by juvenile turtles, although it was limited and variable (we did not quantify
this behavior). Another study using T. e. scripta found little evidence of eating in the first
14 days post hatching [68].

Only 57.5% of turtles in our study that were exposed to ranavirus tested positive for
ranaviral DNA at the time of death. Differences in infection rate from previously published
studies may be attributable to characteristics of viral strains, inoculation dosage, housing
conditions of turtles, or differences in tissues samples for PCR testing. Wirth et al. [23]
also used intramuscular inoculation to infect turtle hatchlings (Emydura macquarii krefftii)
with dosage ranging from 1 × 101.33 to 1 × 105.33 TCID (versus 6.3 × 104 TCID50 in our
study). Median survival time in that study was 22 days across all dose groups, and turtles
inoculated with 1 × 104.33 and 1 × 105.33 TCID had a 100% infection rate as indicated by
testing liver tissue for ranaviral DNA. Comparison of infection and mortality rates with
that study may be complicated by the fact that they infected an Australian freshwater turtle
with BIV (Bohle iridovirus) isolate. In another study using BIV, Ariel et al. [22] exposed
hatchlings of two species of Australian tortoise (Elseya latisternum and Emydura krefftii)
with intracelomic injections of 104.5 TCID50. In the two species, respectively, three of five
and eight of 12 exposed individuals died or were euthanized due to extreme lethargy
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at 10–29 days post inoculation. Among inoculated hatchlings, ranaviral DNA was only
detected from two of five E. latisternum and four of 12 E. krefftii. Johnson et al. [21] injected
1 × 105 TCID of Burmese star tortoise ranavirus (BSTRV) intramuscularly and found a
92% infection rate based on ranaviral DNA in kidney tissue (among eight hatchlings of
T. scripta elegans and four hatchlings of T. carolina carolina). Allender et al. [24] injected
hatching turtles with 5 × 105 TCID50 of a FV3-like ranavirus isolated from an eastern box
turtle (Terrapene carolina carolina); this represents a similar strain but higher dose relative
to our study. In that study, which included our study subject T. scripta elegans, as well
as three other species, ranavirus DNA was detected in all inoculated turtles, and deaths
of all infected turtles occurred 6–16 days after inoculation. Allender et al. [28] injected
5 × 105 TCID50 of a FV3-like virus intramuscularly into eight hatchings (T. scripta elegans)
split into two rearing temperature treatments. All four turtles in the 28 ◦C treatment were
euthanized due to severe clinical symptoms at 14–30 days post inoculation and contained
ranaviral DNA in blood samples and oral and cloacal swabs. Only two of four hatchings
in the 22 ◦C treatment developed clinical signs of infection and had detectable ranaviral
DNA in blood samples and oral swabs. Comparing our infection rate of 57.5% with these
studies, the most comparable studies were two studies by Allender et al. [24,28], which
found infection rates of 100% and 75% using a similar ranaviral isolate, the same species,
and hatchlings (10 days old or less) and adults. Our low rate of infection could be due
to our inoculation dose of 6.3 × 104 TCID50 which is roughly a magnitude lower than
those studies or our average rearing temperature of 24 ◦C which is closer to the low-
temperature treatment which resulted in a lower infection and mortality rate in [24,28].
Another difference from these studies is that we only sampled liver, kidney, and intestine
tissues for PCR testing, whereas Allender et al. [24] sampled spleen, kidney, liver, and
intestine tissues, and Allender et al. [28] sampled tongue, right forelimb skeletal muscle,
liver, heart, lung, spleen, kidney, and ovary tissues.

In our experiment, we failed to detect any impact of environmentally relevant concen-
trations of atrazine, Roundup®, or Rodeo® on infection rate, morbidity, and mortality of
hatchling turtles due to ranavirus exposure. We also found no direct effects of herbicide
or interactions with ranavirus exposure on growth or survival time. However, our results
should be interpreted with caution because of the modest ranavirus infection rate achieved
and the general lack of growth (which may reflect overall health) in our study subjects.

Some studies indicated no detrimental health impacts of atrazine on fish, amphibians,
or reptiles when organisms were exposed to environmentally relevant concentrations
(reviewed in [56]). However, studies also found that atrazine can have subclinical impacts
on immune function, including that of our study species T. scripta elegans [36,69]. In an
experiment with tiger salamanders (Ambystoma tigrinum), atrazine caused higher ranavirus
infection rates when Ambystoma tigrinum were challenged with Ambystoma tigrinum virus
(ATV) at herbicide concentrations of 16 ug/L relative to 0, 1.6, and 160 ug/L [5]. For
comparison, we used 20 ug/L for atrazine and found no impact on infection rate or other
response variables despite using similar sample sizes per treatment group. Kerby and
Storfer [48] exposed salamander larvae to atrazine (20 and 200 ug/L) and found that the
herbicide slightly increased mortality rates in infected larvae but did not increase infection
rates for ATV.

Although glyphosate toxicology has been studied in many wildlife species [70,71],
little is known regarding interactions between glyphosate and ranavirus exposure. A
recently published study found a higher percentage of mortality in juvenile hellbenders
(Cryptobranchus alleganiensis) exposed to both ranavirus and Roundup in comparison to
those only exposed to ranavirus; however, the differences in survival between these groups
were not statistically significant [72]. Our study was limited to 4 weeks post exposure and
measured only a few response variables: infection rate, survival, and growth. Although
dramatic short-term impacts of glyphosate-based herbicides were not detected, this does
not exclude the possibility of other changes that can have lasting impacts. For example, two
environmentally realistic pulse exposures of Roundup WeatherMax® altered mRNA levels
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of thyroid- and stress-related genes in wood frog tadpoles [73]. Some studies evaluating
the impacts of glyphosate on reptile species observed increased DNA damage caused
by exposure to the herbicide [74–76]. Investigations with Caiman latirostris found that
Roundup® reduced white blood cell counts, indicating that the herbicide can impact
immune function in reptiles [77,78].

Impacts of glyphosate-based herbicides on amphibians may differ between chronic
laboratory conditions or pulse exposure which better reflect environmental circumstances
(reviewed in [73]). Chronic laboratory exposures, as in our study, have been criticized for
representing a longer exposure period than in a natural setting; however, even under these
circumstances, we failed to detect any negative impacts of Roundup ProMax® or Rodeo®.
Some studies of herbicide exposures use higher concentrations than those in our study
(2000 µg a.e./L glyphosate). We conservatively chose levels that are commonly reported in
the literature rather than record or maximal concentrations to mimic a more realistic level
of environmental exposure.

The lack of growth and even a slight decrease in mass and length in our experiment
are comparable to a study in which T. e scripta hatchlings were fasted in the first 3 weeks
post hatching [67]. Few turtles remained (42 of 160) in the last 2 weeks of our study, when
hatchling growth most likely would have occurred. Furthermore, many of those that
were remaining showed evidence of skin infection caused by another pathogen (discussed
below). Therefore, our power to detect potential differences in growth rates in later weeks
of the experiments was limited. In a similar study by Allender et al. [24], mass of hatchling
T. scripta elegans increased by 7% in only 16 days and did not vary between turtles exposed
to ranavirus versus controls. Unfortunately, no growth data are available from the other
studies of ranavirus-exposed hatchling turtles to compare with the current study [21–23].

Our study unintentionally included the presence of another pathogen, presumably
a fungus, which caused small fuzzy white growths on the epidermis of hatchling turtles.
Several turtles eventually had these growths on their eyelids, which appeared to cause
irritation and swelling. These white growths were distributed evenly among treatments,
and neither ranavirus nor herbicide exposures were associated with increased occurrence.
Not providing hides or perches for the turtles to dry off during the study may have
facilitated the growth this pathogen, which may have been acquired in our laboratory or
prior to shipment of the turtles. We chose to house our turtles with constant exposure to a
shallow aquatic environment to ensure consistent herbicide exposure between individuals.
This stress may have also contributed to lack of growth in turtles in our study. We purchased
juvenile turtles from a reptile supplier that describes its breeding facility as 12 turtle ponds
containing approximately 1800 adult breeders of multiple species. The juveniles were
housed in a small natural pond; thus, exposure to parasites, as well as stress experienced
en route to our laboratory, may have affected the initial health of turtles in our experiment.
We received the turtles in a box with soft loose cushion material and cloth bags containing
10 turtles per bag without any barriers or separation between them. The aforementioned
potential stressors could have impacted the scope of the study; however, they were not
expected to produce any systematic bias between treatments.

5. Conclusions

Ranaviruses are increasingly recognized as significant pathogens worldwide, but their
influence on health and survival in reptiles is understudied [79]. Our study provides an
investigation of interactions between ranaviruses and herbicides, but the importance of
many other pollutants and environmental stressors remains to be examined. As expected,
ranavirus exposure decreased survival time and reduced mass and plastron length in
juvenile turtles. However, contrary to our expectations, we did not detect any direct effects
of atrazine or two formulations of glyphosate on growth or survival or any interaction with
ranavirus exposure in terms of susceptibility, morbidity, or mortality. We urge caution in
interpretation of our results, because of the low growth rates and infection rates and the
unplanned occurrence of another pathogen in our study system. In conclusion, we urge
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replication of ranavirus exposure studies in different study species and with inclusion of
other environmental pollutants and stressors.

Author Contributions: Conceptualization, R.M.G. and D.L.M.; data curation, R.M.G., E.D.C. and
D.L.M.; formal analysis, R.M.G. and E.D.C.; funding acquisition, R.M.G. and D.L.M.; investigation,
R.M.G., E.D.C., and D.L.M.; methodology, R.M.G. and E.D.C.; resources, R.M.G. and D.L.M.; writing—
original draft, R.M.G. and E.D.C.; writing—review and editing, R.M.G., E.D.C. and D.L.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was largely funded by a grant from the Thomas F. and Kate Miller Jeffress
Memorial Trust to R.M.G. Support, materials, and equipment were also provided by Hampden-
Sydney College, particularly the Biology Department and Honors Program.

Institutional Review Board Statement: All work in this study was approved by the Hampden-
Sydney College Animal Care and Use Committee, under the protocol number 965 (approved
05 December 2014).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available online at:
dx.doi.org/10.6084/m9.figshare.15032154.

Acknowledgments: We are grateful to the Thomas F. and Kate Miller Jeffress Memorial Trust and
Hampden-Sydney College for supporting this study. We thank Mark French for assisting with
humane euthanasia, Rachel Hill, Becky Hardman, and University of Tennessee College of Veterinary
Medicine Histology Laboratory for assistance with histopathology, and Becky Wilkes for virus
isolation and quantification.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gray, M.J.; Chinchar, V.G. History and future of ranaviruses. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J.,

Chinchar, V.G., Eds.; Springer: Berlin, Germany, 2015; pp. 1–7. [CrossRef]
2. Chinchar, V.G. Ranaviruses (family Iridoviridae): Emerging cold-blooded killers. Arch. Virol. 2002, 147, 447–470. [CrossRef]
3. Daszak, P.; Berger, L.; Cunningham, A.A.; Hyatt, A.D.; Green, D.E.; Speare, R. Emerging infectious diseases and amphibian

population declines. Emerg. Infect. Dis. 1999, 5, 735–748. [CrossRef] [PubMed]
4. Hoverman, J.T.; Gray, M.J.; Miller, D.L. Anuran susceptibilities to ranaviruses: Role of species identity, exposure route, and a

novel virus isolate. Dis. Aquat. Org. 2010, 89, 97–107. [CrossRef] [PubMed]
5. Forson, D.D.; Storfer, A. Atrazine increases ranavirus susceptibility in the Tiger Salamander, Ambystoma tigrinum. Ecol. Appl. 2006,

16, 2325–2332. [CrossRef]
6. Schock, D.M.; Bollinger, T.K.; Collins, J.P. Mortality rates differ among amphibian populations exposed to three strains of a lethal

ranavirus. Ecohealth 2009, 6, 438–448. [CrossRef] [PubMed]
7. Brunner, J.L.; Richards, K.; Collins, J.P. Dose and host characteristics influence virulence of ranavirus infections. Oecologia 2005,

144, 399–406. [CrossRef]
8. Brand, M.D.; Hill, R.D.; Brenes, R.; Chaney, J.C.; Wilkes, R.P.; Grayfer, L.; Miller, D.L.; Gray, M.J. Water temperature affects

susceptibility to ranavirus. Ecohealth 2016, 13, 350–359. [CrossRef] [PubMed]
9. Ahne, W.; Bremont, M.; Hedrick, R.P.; Hyatt, A.D.; Whittington, R.J. Iridoviruses associated with epizootic haematopoietic

necrosis (EHN) in aquaculture. World J. Microbiol. Biotechnol. 1997, 13, 367–373. [CrossRef]
10. Haislip, N.A.; Gray, M.J.; Hoverman, J.T.; Miller, D.L. Development and disease: How susceptibility to an emerging pathogen

changes through anuran development. PLoS ONE 2011, 6, e22307. [CrossRef]
11. Whittington, R.J.; Becker, J.A.; Dennis, M.M. Iridovirus infections in finfish—Critical review with emphasis on ranaviruses. J. Fish.

Dis. 2010, 33, 95–122. [CrossRef]
12. Duffus, A.L.J.; Waltzek, T.B.; Stöhr, A.C.; Allender, M.C.; Gotesman, M.; Whittington, R.J.; Hick, P.; Hines, M.K.; Marschang,

R.E. Distribution and host range of ranaviruses. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J.,
Chinchar, V.G., Eds.; Springer: Berlin, Germany, 2015; pp. 9–57. ISBN 9783319137551.

13. Green, D.E.; Converse, K.A.; Schrader, A.K. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA,
1996-2001. Ann. N. Y. Acad. Sci. 2002, 969, 323–339. [CrossRef]

14. Daszak, P.; Cunningham, A.A.; Consortium, A.D.H. Infectious disease and amphibian population declines. Divers. Distrib. 2003,
9, 141–150. [CrossRef]

15. Hyatt, A.D.; Williamson, M.; Coupar, B.E.H.; Middleton, D.; Hengstberger, S.G.; Gould, R.; Selleck, P.; Wise, T.G.; Kattenbelt, J.;
Cunningham, A.A.; et al. First identification of a ranavirus from green pythons (Chondropython viridis). J. Wildl. Dis. 2002,
38, 239–252. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-13755-1
http://doi.org/10.1007/s007050200000
http://doi.org/10.3201/eid0506.990601
http://www.ncbi.nlm.nih.gov/pubmed/10603206
http://doi.org/10.3354/dao02200
http://www.ncbi.nlm.nih.gov/pubmed/20402227
http://doi.org/10.1890/1051-0761(2006)016[2325:AIRSIT]2.0.CO;2
http://doi.org/10.1007/s10393-010-0279-0
http://www.ncbi.nlm.nih.gov/pubmed/20143127
http://doi.org/10.1007/s00442-005-0093-5
http://doi.org/10.1007/s10393-016-1120-1
http://www.ncbi.nlm.nih.gov/pubmed/27283058
http://doi.org/10.1023/A:1018563930712
http://doi.org/10.1371/journal.pone.0022307
http://doi.org/10.1111/j.1365-2761.2009.01110.x
http://doi.org/10.1111/j.1749-6632.2002.tb04400.x
http://doi.org/10.1046/j.1472-4642.2003.00016.x
http://doi.org/10.7589/0090-3558-38.2.239
http://www.ncbi.nlm.nih.gov/pubmed/12038121


Viruses 2021, 13, 1440 17 of 19

16. Stöhr, A.C.; Blahak, S.; Heckers, K.O.; Wiechert, J.; Behncke, H.; Mathes, K.; Günther, P.; Zwart, P.; Ball, I.; Rüschoff, B.; et al.
Ranavirus infections associated with skin lesions in lizards. Vet. Res. 2013, 44, 84. [CrossRef]

17. De Voe, R.; Geissler, K.; Elmore, S.; Rotstein, D.; Lewbart, G.; Guy, J. Ranavirus-associated morbidity and mortality in a group of
captive eastern box turtles (Terrapene carolina carolina). J. Zoo Wildl. Med. 2004, 35, 534–543. [CrossRef] [PubMed]

18. Sim, R.R.; Allender, M.C.; Crawford, L.K.; Wack, A.N.; Murphy, K.J.; Mankowski, J.L.; Bronson, E. Ranavirus epizootic in
captive Eastern Box Turtles (Terrapene carolina carolina) with concurrent herpesvirus and mycoplasma infection: Management and
monitoring. J. Zoo Wildl. Med. 2016, 47, 256–270. [CrossRef] [PubMed]

19. McKenzie, C.M.; Piczak, M.L.; Snyman, H.N.; Joseph, T.; Theijin, C.; Chow-Fraser, P.; Jardine, C.M. First report of ranavirus
mortality in a common snapping turtle Chelydra serpentina. Dis. Aquat. Org. 2019, 132, 221–227. [CrossRef]

20. Brenes, R.; Gray, M.J.; Waltzek, T.B.; Wilkes, R.P.; Miller, D.L. Transmission of ranavirus between ectothermic vertebrate hosts.
PLoS ONE 2014, 9, e92476. [CrossRef]

21. Johnson, A.J.; Pessier, A.P.; Jacobson, E.R. Experimental transmission and induction of ranaviral disease in Western Ornate box
turtles (Terrapene ornata ornata) and Red-eared Sliders (Trachemys scripta elegans). Vet. Pathol. 2007, 44, 285–297. [CrossRef]

22. Ariel, E.; Wirth, W.; Burgess, G.; Scott, J.; Owens, L. Pathogenicity in six Australian reptile species following experimental
inoculation with Bohle iridovirus. Dis. Aquat. Org. 2015, 115, 203–212. [CrossRef] [PubMed]

23. Wirth, W.; Schwarzkopf, L.; Skerratt, L.F.; Tzamouzaki, A.; Ariel, E. Dose-dependent morbidity of freshwater turtle hatchlings,
Emydura macquarii krefftii, inoculated with Ranavirus isolate (Bohle iridovirus, Iridoviridae). J. Gen. Virol. 2019, 100, 1431–1441.
[CrossRef]

24. Allender, M.C.; Barthel, A.C.; Rayl, J.M.; Terio, K.A. Experimental transmission of frog virus 3–like ranavirus in juvenile chelonians
at two temperatures. J. Wildl. Dis. 2018, 54, 716–725. [CrossRef] [PubMed]

25. Goodman, R.M.; Miller, D.L.; Ararso, Y.T. Prevalence of ranavirus in Virginia turtles as detected by tail-clip sampling versus
oral-cloacal swabbing. Northeast. Nat. 2013, 20, 325–332. [CrossRef]

26. Goodman, R.M.; Hargadon, K.M.; Carter, E.D. Detection of ranavirus in eastern fence lizards and eastern box turtles in central
Virginia. Northeast. Nat. 2018, 25, 391–398. [CrossRef]

27. Sutton, W.B.; Gray, M.J.; Hoverman, J.T.; Secrist, R.G.; Super, P.E.; Hardman, R.H.; Tucker, J.L.; Miller, D.L. Trends in ranavirus
prevalence among Plethodontid salamanders in the Great Smoky Mountains National Park. Ecohealth 2014, 12, 320–329. [CrossRef]

28. Allender, M.; Mitchell, M.; Torres, T.; Sekowska, J.; Driskell, E.A. Pathogenicity of frog virus 3-like virus in red-eared slider turtles
(Trachemys scripta elegans) at two environmental temperatures. J. Comp. Pathol. 2013, 149, 356–367. [CrossRef]

29. Powell, R.; Roger, C.; Collins, J.T. Peterson Field Guide to Reptiles and Amphibians of Eastern and Central North America, 4th ed.;
Houghton Mifflin Co.: Boston, MA, USA, 2016.

30. Rhodin, A.G.; Stanford, C.B.; Van Dijk, P.P.; Eisemberg, C.; Luiselli, L.; Mittermeier, R.A.; Hudson, R.; Horne, B.D.; Goode, E.V.;
Kuchling, G.; et al. Global conservation status of turtles and tortoises (order Testudines). Chelonian Conserv. Biol. 2018, 17, 135–161.
[CrossRef]

31. Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage: 2008–2012 Market Estimates; EPA: Washington, DC, USA, 2017.
32. Stone, W.W.; Gilliom, R.J.; Ryberg, K.R. Pesticides in US streams and rivers: Occurrence and trends during 1992–2011. Environ.

Sci. Technol. 2014, 48, 11025–11030. [CrossRef]
33. Grube, A.; Donaldson, D.; Kiely, T.; Wu, L. Pesticide Industry Sales and Usage Report: 2006 and 2007 Market Estimates; EPA:

Washington, DC, USA, 2007.
34. Holland, J.; Sinclair, P. Environmental fate of pesticides and the consequences for residues in food and drinking water. In

Pesticide Residues in Food and Drinking Water: Human Exposure and Risks; Hamilton, D., Crossley, S., Eds.; John Wiley & Sons, Ltd.:
Chichester, UK, 2003; pp. 27–62.

35. Relyea, R.A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl.
2011, 15, 618–627. [CrossRef]

36. Brodkin, M.A.; Madhoun, H.; Rameswaran, M.; Vatnick, I. Atrazine is an immune disruptor in adult Northern Leopard Frogs
(Rana pipiens). Environ. Toxicol. Chem. 2007, 26, 80. [CrossRef] [PubMed]

37. Gray, M.J.; Miller, D.L.; Hoverman, J.T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 2009, 87, 243–266.
[CrossRef]

38. Sures, B. How parasitism and pollution affect the physiological homeostasis of aquatic hosts. J. Helminthol. 2006, 80, 151–157.
[CrossRef]

39. Pickering, A.D.; Pottinger, T.G. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma
cortisol. Fish. Physiol. Biochem. 1989, 7, 253–258. [CrossRef]

40. Galloway, T.S.; Depledge, M.H. Immunotoxicity in invertebrates: Measurement and ecotoxicological relevance. Ecotoxicology
2001, 10, 5–23. [CrossRef]

41. Christin, M.S.; Gendron, A.D.; Brousseau, P.; Ménard, L.; Marcogliese, D.J.; Cyr, D.; Ruby, S.; Fournier, M. Effects of agricultural
pesticides on the immune system of Rana pipiens and on its resistance to parasitic infection. Environ. Toxicol. Chem. Int. J. 2003,
22, 1127–1133. [CrossRef]

42. Coors, A.; Decaestecker, E.; Jansen, M.; De Meester, L. Pesticide exposure strongly enhances parasite virulence in an invertebrate
host model. Oikos 2008, 117, 1840–1846. [CrossRef]

http://doi.org/10.1186/1297-9716-44-84
http://doi.org/10.1638/03-037
http://www.ncbi.nlm.nih.gov/pubmed/15732597
http://doi.org/10.1638/2015-0048.1
http://www.ncbi.nlm.nih.gov/pubmed/27010285
http://doi.org/10.3354/dao03324
http://doi.org/10.1371/journal.pone.0092476
http://doi.org/10.1354/vp.44-3-285
http://doi.org/10.3354/dao02889
http://www.ncbi.nlm.nih.gov/pubmed/26290505
http://doi.org/10.1099/jgv.0.001324
http://doi.org/10.7589/2017-07-181
http://www.ncbi.nlm.nih.gov/pubmed/29878878
http://doi.org/10.1656/045.020.0208
http://doi.org/10.1656/045.025.0306
http://doi.org/10.1007/s10393-014-0994-z
http://doi.org/10.1016/j.jcpa.2013.01.007
http://doi.org/10.2744/CCB-1348.1
http://doi.org/10.1021/es5025367
http://doi.org/10.1890/03-5342
http://doi.org/10.1897/05-469.1
http://www.ncbi.nlm.nih.gov/pubmed/17269463
http://doi.org/10.3354/dao02138
http://doi.org/10.1079/JOH2006346
http://doi.org/10.1007/BF00004714
http://doi.org/10.1023/A:1008939520263
http://doi.org/10.1002/etc.5620220522
http://doi.org/10.1111/j.1600-0706.2008.17028.x


Viruses 2021, 13, 1440 18 of 19

43. Taylor, S.K.; Williams, E.S.; Mills, K.W. Effects of malathion on disease susceptibility in Woodhouse’s toads. J. Wildl. Dis. 1999,
35, 536–541. [CrossRef] [PubMed]

44. Howe, C.M.; Berrill, M.; Pauli, B.D.; Helbing, C.C.; Werry, K.; Veldhoen, N. Toxicity of glyphosate-based pesticides to four North
American frog species. Environ. Toxicol. Chem. 2004, 23, 1928–1938. [CrossRef]

45. Hayes, T.B.; Anderson, L.L.; Beasley, V.R.; De Solla, S.R.; Iguchi, T.; Ingraham, H.; Kestemont, P.; Kniewald, J.; Kniewald, Z.;
Langlois, V.S.; et al. Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes.
J. Steroid Biochem. Mol. Biol. 2001, 127, 64–73. [CrossRef]

46. Pochini, K.M.; Hoverman, J.T. Reciprocal effects of pesticides and pathogens on amphibian hosts: The importance of exposure
order and timing. Environ. Pollut. 2017, 221, 359–366. [CrossRef]

47. Relyea, R.A.; Hoverman, J.T. Interactive effects of predators and a pesticide on aquatic communities. Oikos 2008, 117, 1647–1658.
[CrossRef]

48. Kerby, J.L.; Storfer, A. Combined effects of atrazine and chlorpyrifos on susceptibility of the tiger salamander to Ambystoma
tigrinum virus. Ecohealth 2009, 6, 91–98. [CrossRef]

49. Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [CrossRef]
[PubMed]

50. Gianessi, L.P. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 2005, 61, 241–245. [CrossRef]
51. Wan, M.T.; Watts, R.G.; Moul, D.J. Effects of different dilution water types on the acute toxicity to juvenile Pacific salmonids and

rainbow trout of glyphosate and its formulated products. Bull. Environ. Contam. Toxicol. 1989, 43, 378–385. [CrossRef] [PubMed]
52. Pérez, G.L.; Vera, M.S.; Miranda, L.A. Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems.

In Herbicides and Environment; Kortekamp, A., Ed.; IntechOpen: London, UK, 2011; Volume 16, pp. 343–368.
53. Battaglin, W.A.; Rice, K.C.; Focazio, M.J.; Salmons, S.; Barry, R.X. The occurrence of glyphosate, atrazine, and other pesticides in

vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006. Environ. Monit. Assess. 2009,
155, 281–307. [CrossRef] [PubMed]

54. Sass, J.B.; Colangelo, A. European Union bans atrazine, while the United States negotiates continued use. Int. J. Occup. Environ.
Health 2006, 12, 260–267. [CrossRef] [PubMed]

55. Solomon, K.R.; Carr, J.A.; Du Preez, L.H.; Giesy, J.P.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.J. Effects of atrazine on fish,
amphibians, and aquatic reptiles: A critical review. Crit. Rev. Toxicol. 2008, 38, 721–772. [CrossRef]

56. Van Der Kraak, G.J.; Hosmer, A.J.; Hanson, M.L.; Kloas, W.; Solomon, K.R. Effects of atrazine in fish, amphibians, and reptiles:
An analysis based on quantitative weight of evidence. Crit. Rev. Toxicol. 2014, 44, 1–66. [CrossRef]

57. Rohr, J.R.; McCoy, K.A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians.
Environ. Health Perspect. 2010, 118, 20–32. [CrossRef]

58. Solomon, K.R.; Thompson, D.G. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J. Toxicol.
Environ. Health Part B 2003, 6, 289–324. [CrossRef]

59. Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for Roundup (R) herbicide. Rev. Environ. Contam. Toxicol.
2000, 167, 35–120. [CrossRef]

60. Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D. Herbicides and transformation products in surface waters of the
Midwestern United States. J. Am. Water Resour. Assoc. 2004, 80225, 743–756. [CrossRef]

61. Solomon, K.R.; Baker, D.B.; Richards, R.P.; Dixon, K.R.; Klaine, S.J.; La Point, T.W.; Kendall, R.J.; Weisskopf, C.P.; Giddins, J.M.;
Giesy, J.P.; et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 1996, 15, 31–76.
[CrossRef]

62. Brenes, R.; Miller, D.L.; Waltzek, T.B.; Wilkes, R.P.; Tucker, J.L.; Chaney, J.C.; Hardman, R.H.; Brand, M.D.; Huether, R.R.; Gray, M.J.
Susceptibility of fish and turtles to three ranaviruses isolated from different ectothermic vertebrate classes. J. Aquat. Anim. Health
2014, 26, 118–126. [CrossRef]

63. Schock, D.M.; Bollinger, T.K.; Gregory Chinchar, V.; Jancovich, J.K.; Collins, J.P. Experimental evidence that amphibian ranaviruses
are multi-host. Copeia 2008, 2008, 133–143. [CrossRef]

64. Picco, A.M.; Brunner, J.L.; Collins, J.P. Susceptibility of the endangered California tiger salamander, Ambystoma californiense, to
ranavirus infection. J. Wildl. Dis. 2007, 43, 286–290. [CrossRef] [PubMed]

65. Sutton, W.B.; Gray, M.J.; Hardman, R.H.; Wilkes, R.P.; Kouba, A.J.; Miller, D.L. High susceptibility of the endangered dusky
gopher frog to ranavirus. Dis. Aquat. Org. 2014, 112, 9–16. [CrossRef] [PubMed]

66. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
67. Willingham, E. Embryonic exposure to low-dose pesticides: Effects on growth rate in the hatchling Red-eared Slider Turtle. J.

Toxicol. Environ. Health Part A 2001, 64, 257–272. [CrossRef] [PubMed]
68. Sparling, D.W.; Matson, C.; Bickham, J.; Doelling-Brown, P. Toxicity of glyphosate as Glypro and LI700 to Red-eared Slider

(Trachemys scripta elegans) embryos and early hatchlings. Environ. Toxicol. Chem. 2006, 25, 2768–2774. [CrossRef]
69. Soltanian, S. Effect of atrazine on immunocompetence of Red-eared Slider Turtle (Trachemys scripta). J. Immunotoxicol. 2016,

13, 804–809. [CrossRef]
70. Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426.

[CrossRef]

http://doi.org/10.7589/0090-3558-35.3.536
http://www.ncbi.nlm.nih.gov/pubmed/10479088
http://doi.org/10.1897/03-71
http://doi.org/10.1016/j.jsbmb.2011.03.015
http://doi.org/10.1016/j.envpol.2016.11.086
http://doi.org/10.1111/j.1600-0706.2008.16933.x
http://doi.org/10.1007/s10393-009-0234-0
http://doi.org/10.1186/s12302-016-0070-0
http://www.ncbi.nlm.nih.gov/pubmed/27752438
http://doi.org/10.1002/ps.1013
http://doi.org/10.1007/BF01701872
http://www.ncbi.nlm.nih.gov/pubmed/2790244
http://doi.org/10.1007/s10661-008-0435-y
http://www.ncbi.nlm.nih.gov/pubmed/18677547
http://doi.org/10.1179/oeh.2006.12.3.260
http://www.ncbi.nlm.nih.gov/pubmed/16967834
http://doi.org/10.1080/10408440802116496
http://doi.org/10.3109/10408444.2014.967836
http://doi.org/10.1289/ehp.0901164
http://doi.org/10.1080/10937400306468
http://doi.org/10.1007/978-1-4612-1156-3_2
http://doi.org/10.1111/j.1752-1688.2003.tb04402.x
http://doi.org/10.1002/etc.5620150105
http://doi.org/10.1080/08997659.2014.886637
http://doi.org/10.1643/CP-06-134
http://doi.org/10.7589/0090-3558-43.2.286
http://www.ncbi.nlm.nih.gov/pubmed/17495315
http://doi.org/10.3354/dao02792
http://www.ncbi.nlm.nih.gov/pubmed/25392038
http://doi.org/10.1080/15287390152543726
http://www.ncbi.nlm.nih.gov/pubmed/11594703
http://doi.org/10.1897/05-152.1
http://doi.org/10.1080/1547691X.2016.1195463
http://doi.org/10.1007/s10311-017-0689-0


Viruses 2021, 13, 1440 19 of 19

71. Mensah, P.K.; Palmer, C.G.; Odume, O.N. Ecotoxicology of glyphosate and glyphosate-based herbicides—Toxicity to wildlife and
humans. In Toxicity and Hazard of Agrochemicals; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2015. [CrossRef]

72. Cusaac, J.; Carter, E.; Woodhams, D.; Robert, J.; Spatz, J.; Howard, J.; Lillard, C.; Graham, A.; Hill, R.; Reinsch, S.; et al. Emerging
pathogens and a current-use pesticide: Potential impacts on Eastern Hellbenders. J. Aquat. Anim. Health 2021, 33, 24–32.
[CrossRef]

73. Lanctôt, C.; Robertson, C.; Navarro-Martín, L.; Edge, C.; Melvin, S.D.; Houlahan, J.; Trudeau, V.L. Effects of the glyphosate-based
herbicide Roundup WeatherMax® on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands. Aquat. Toxicol.
2013, 140–141, 48–57. [CrossRef] [PubMed]

74. Schaumburg, L.; Siroski, P.; Poletta, G.; Mudry, M. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator
merianae) embryos. Pestic. Biochem. Physiol. 2016, 130, 71–78. [CrossRef] [PubMed]

75. Poletta, G.; Larriera, A.; Kleinsorge, E.; Mudry, M. Genotoxicity of the herbicide formulation Roundup® (glyphosate) in broad-
snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat. Res. Genet. Toxicol. Environ.
Mutagen. 2009, 672, 95–102. [CrossRef]

76. González, E.; Latorre, M.; Larriera, A.; Siroski, P.; Poletta, G. Induction of micronuclei in broad snouted caiman (Caiman
latirostris) hatchlings exposed in vivo to Roundup® (glyphosate) concentrations used in agriculture. Pestic. Biochem. Physiol.
2013, 105, 131–134. [CrossRef]

77. Latorre, M.; López González, E.; Larriera, A.; Poletta, G.; Siroski, P. Effects of in vivo exposure to Roundup® on immune system
of Caiman latirostris. J. Immunotoxicol. 2013, 10, 349–354. [CrossRef] [PubMed]

78. Siroski, P.; Poletta, G.; Latorre, M.; Merchant, M.; Ortega, H.; Mudry, M. Immunotoxicity of commercial-mixed glyphosate in
Broad Snouted Caiman (Caiman latirostris). Chem. Biol. Interact. 2016, 244, 64–70. [CrossRef]

79. Duffus, A.; Bartlett, P.; Stilwell, N.; Goodman, R. Ranaviruses in Wild Reptiles in the USA. Available online: https:
//static1.squarespace.com/static/574455b9f8baf3fd9156d863/t/607dc2939e25a5085c7c3f34/1618854548016/Ranaviruses+in+
Wild+North+American+Reptiles+-+17R1.pdf (accessed on 18 June 2021).

http://doi.org/10.5772/60767
http://doi.org/10.1002/aah.10117
http://doi.org/10.1016/j.aquatox.2013.05.012
http://www.ncbi.nlm.nih.gov/pubmed/23751794
http://doi.org/10.1016/j.pestbp.2015.11.009
http://www.ncbi.nlm.nih.gov/pubmed/27155487
http://doi.org/10.1016/j.mrgentox.2008.10.007
http://doi.org/10.1016/j.pestbp.2012.12.009
http://doi.org/10.3109/1547691X.2012.747233
http://www.ncbi.nlm.nih.gov/pubmed/23244546
http://doi.org/10.1016/j.cbi.2015.11.031
https://static1.squarespace.com/static/574455b9f8baf3fd9156d863/t/607dc2939e25a5085c7c3f34/1618854548016/Ranaviruses+in+Wild+North+American+Reptiles+-+17R1.pdf
https://static1.squarespace.com/static/574455b9f8baf3fd9156d863/t/607dc2939e25a5085c7c3f34/1618854548016/Ranaviruses+in+Wild+North+American+Reptiles+-+17R1.pdf
https://static1.squarespace.com/static/574455b9f8baf3fd9156d863/t/607dc2939e25a5085c7c3f34/1618854548016/Ranaviruses+in+Wild+North+American+Reptiles+-+17R1.pdf

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

